FLOW CURVATURE APPLIED TO MODELLING OF CRITICAL PHENOMENA



Cite item

Full Text

Abstract

Modeling of critical phenomena is a very important problem, which has direct applied application in many branches of science and technology. In this paper we regard a modification of the low curvature method applied to construction of invariant manifolds of autonomous fast-slow dynamic systems. We compared a new method with original ones via finding duck-trajectories and their multidimensional analogues surfaces with variable stability. Comparison was used a three-dimensional autocatalytic reaction model and a model of the burning problem.

About the authors

M. O. Balabaev

Samara National Research University

Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0001-6761-104X

postgraduate student of the Department of Differential Equations and Control Theory

References

  1. Sobolev V.A., Shchepakina E.A. Reduktsiya modelei i kriticheskie yavleniya v makrokinetike . M.: Fizmatlit, 2010, 320 p. Available at: http://www.studentlibrary.ru/book/ISBN9785922112697.html .
  2. Benoit E., Calot J.L., Diener M. Chasse au Canard. Collectanea Mathematica, 1981, V. 31–32, pp. 37–119. Available at: https://www.academia.edu/19856616/Chasse_au_canard.
  3. .
  4. Diener M. Nessie et les Canards. Strasbourg: Publication IRMA, 1979. .
  5. Gorelov G.N., Sobolev V. A. Duck-trajectories in a Thermal Explosion Problem. Applied Mathematical Letters, 1992, V. 5, pp. 3–6. doi: 10.1016/0893-9659(92)90002-Q
  6. Sobolev V.A., Shchepakina E.A. Self-ignition of Dusty Media. Combustion: Explosion and Shock Waves, 1993, V. 29, pp. 378–381. doi: 10.1007/BF00797664 .
  7. Goldshtein V., Zinoviev A., Sobolev V., Shchepakina E. Criterion for Thermal Explosion with Reactant Consumption in a Dusty Gas. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 1996, V. 452, pp. 2103–2119. doi: 10.1098/rspa.1996.0111 .
  8. Sobolev V.A., Shchepakina E.A. Duck Trajectories in a Problem of Combustion Theory. Differential Equations, 1996, V. 32, pp. 1177–1186. Available at: https://elibrary.ru/item.asp?id=13231308
  9. Gavin C., Pokrovskii A., Prentice M., Sobolev V. Dynamics of a Lotka-Volterra Type Model with Applications to Marine Phage Population Dynamics. Journal of Physics: Conference Series, 2006, V. 55, pp. 80–93. doi: 10.1088/1742-6596/55/1/008 .
  10. Shchepakina E., Korotkova O. Condition for Canard Explosion in a Semiconductor Optical Amplier. Journal of the Optical Society of America B: Optical Physics, 2011, V. 28, pp. 1988–1993. doi: 10.1364/JOSAB.28.001988 .
  11. Shchepakina E., Korotkova O. Canard Explosion in Chemical and Optical Systems. Discrete and Continuous Dynamical Systems (series B), 2013, V. 18, pp. 495–512. doi: 10.3934/dcdsb.2013.18.495 .
  12. Shchepakina E., Sobolev V. Integral Manifolds, Canards and Black Swans. Nonlinear Analysis. Ser. A: Theory Methods, 2001, V. 44, pp. 897–908. doi: 10.1016/S0362-546X(99)00312-0 .
  13. Shchepakina E.A., Sobolev V.A., Mortell M.P. Introduction to system order reduction methods with applications. Lecture notes in math, 2014, Vol. 2114, 201 p. Available at: https://pl.b-ok.cc/book/2466101/06d4ed
  14. Sobolev V. A., Shchepakina E. A. Standard Chase on Black Swans and Canards. Preprint N 426. Berlin: WIAS, 1998. Available at: https://pdfs.semanticscholar.org/ec52/384507ac225541417f856ce8a02de7680a66.pdf?_ga= 2.63816171.510207900.1570716853-18694247.1570716853 .
  15. Shchepakina E. Canards and Black Swans in Model of a 3-D Autocatalator. Journal of Physics: Conference Series, 2005, V. 22, pp. 194–207. doi: 10.1088/1742-6596/22/1/013 .
  16. Balabaev M. Black swan and curvature in an autocatalator model. Procedia Engineering, 2017, V. 201, pp. 561–566. doi: 10.1016/j.proeng.2017.09.614 .
  17. Balabaev M. Metod krivisni potoka v zadache goreniya . Sbornik trudov IV mezhdunarodnoi konferentsii i molodezhnoi shkoly ”Informatsionnye tekhnologii i nanotekhnologii” (ITNT-2018) . Samara: Novaya tekhnika, 2018, p. 1996–2000. Available at: http://repo.ssau.ru/ bitstream/Informacionnye-tehnologii-i-nanotehnologii/Metod-krivizny-potoka-v-zadache-goreniya-69411/1/ paper_269.pdf .
  18. Bogolyubov N.N., Mitropolsky Yu.A. Asimptoticheskie metody v teorii nelineinykh kolebanii . М.: Nauka, 1974, 504 p. Available at: http://bookre.org/reader?file=544039 .
  19. Darboux J.G. Memoire sur les equations differentielles dlgebriques du premier ordre et du premier degre. Bulletin des Sciences Mathematiques et Astronomiques, Serie 2, V. 2(1878), pp. 151–200. Available at: http://www.numdam.org/article/BSMA_1878_2_2_1_151_1.pdf .
  20. Demazure M. Catastrophes et bifurcations. Paris: Ellipses., 1989. Available at: http://bookre.org/ reader?file=1329312 .
  21. Ginoux J.M. Differential geometry applied to dynamical systems. Singapore: World Scientic, 2009. Vol. 3. Available at: http://bookre.org/reader?file=700337 .
  22. Rossetto B. Singular Approximation of Chaotic Slow-fast Dynamical Systems. Lecture Notes in Physics, 1986, V. 278, pp. 12–14. doi: 10.1007/3-540-17894-5_306

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Balabaev M.O.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies