INFLUENCE OF THE HIGHER ORDER TERMS IN WILLIAMS’ SERIES EXPANSION OF THE STRESS FIELD ON THE STRESS-STRAIN STATE IN THE VICINITY OF THE CRACK TIP. PART I



Cite item

Full Text

Abstract

The paper is devoted to the multi-parameter description of the stress fields in the vicinity of two collinear crack of different length in an infinite isotropic elastic medium subjected to 1) Mode I loading; 2) Mode II loading; 3) mixed (Mode I + Mode II) mode loading. The multi-parameter asymptotic expansions of the stress field in the vicinity of the crack tip in isotropic linear elastic media under mixed mode loading are obtained. The amplitude coefficients of the multi-parameter series expansion are found in the closed form. Having obtained the coefficients of the Williams series expansion one can keep any preassigned number of terms in the asymptotic series. Asymptotic analysis of number of the terms in the Williams asymptotic series which is necessary to keep in the asymptotic series at different distances from the crack tip. It is shown that the more distance from the crack tip the more terms in the Williams asymptotic expansion need to be kept.

About the authors

L. V. Stepanova

Samara National Research University

Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0002-6693-3132

Doctor of Physical and Mathematical Sciences, professor of the Department of Mathematical Modelling in Mechanics

References

  1. Muskhelishvili N.I. Nekotorye osnovnye zadachi matematicheskoi teorii uprugosti . М.: Nauka, 1966, 708 р. Available at: http://bookre.org/reader?file=469235 .
  2. Williams M.L. On the stress distribution at the base of a stationary crack. Trans. ASME. Journal of Applied Mechanics, 1957, Vol. 24, pp. 109–114. Available at: https://pdfs.semanticscholar.org/ bf85/be73df7eb5449a8c856c5ec2fcc2487b04dd.pdf .
  3. Hello G., Tahar M.B., Roelandt J.-M. Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium. International Journal of Solids and Structures, Vol. 49, Issues 3–4, February 2012, pp. 556-566. doi: 10.1016/j.ijsolstr.2011.10.024 .
  4. Adylina E.M., Stepanova L.V. O postroenii mnogomasshtabnykh modelei neuprugogo razrusheniya . Vestnik Samarskogo gosudarstvennogo universiteta , 2012, no. 9(100), pp. 70–83. Available at: http://www.mathnet.ru/ php/archive.phtml?wshow=paper&jrnid=vsgu&paperid=101&option_lang=rus .
  5. Hello G. Derivation of complete crack-tip stress expansions from Westergaard-Sanford solutions. International Journal of Solids and Structures, 2018, Vol. 144-145, pp. 265–275. doi: 10.1016/j.ijsolstr.2018.05.012 .
  6. F. Zhu . On the stress singularity at crack tip in elasticity. Results in Physics, 2019, Vol. 13, 102210 .
  7. Krepl O., Klusak J. Multi-parameter average strain energy density factor criterion applied on the sharp material inclusion problem. Procedia Structural Integrity, 2018, Vol. 13, pp. 1279–1284 .
  8. Moazzami M., Ayatollahi M.R., Chamani H.R., Guagliano Vergani L. Determination of higher order stress terms in cracked Brazilian disc specimen under mode I loading using digital image correlation technique. Optic and Laser Technology, Volume 107, November 2018, pp. 344–352. doi: 10.1016/j.optlastec.2018.06.010 .
  9. Karihaloo B.L., Xiao Q.Z. Asymptotic crack tip fields in linear and nonlinear materials and their role in crack propagation. Physical Mesomechanics, January 2019, Volume 22, pp. 18–31. doi: 10.1134/S1029959919010053 .
  10. Berto F., Lazzarin P. Recent developments in brittle and quasi-brittle failure assessment of engineering materials by means of local approaches. Materials Science and Engineering: R: Reports, Vol. 75, January 2014, pp. 1–48. doi: 10.1016/j.mser.2013.11.001 .
  11. Sih G.C. A Special Theory of Crack Propagation: Methods of Analysis and Solutions of Crack Problems. In: Mechanics of Fracture. Noordhoff: International Publishing, Leiden, 1973, pp. 21–45. Available at: http://bookre.org/reader?file=1279909 .
  12. Stepanova L.V., Igonin S.A. Rabotnov damageparameter and description of delayed fracture: Results, current status, application to fracture mechanics, and prospects. Journal of Applied Mechanics and Technical Physics, March 2015, Volume 56, Issue 2, pp. 282–292. doi: 10.1134/S0021894415020145 .
  13. Malikova L. Multi-parameter fracture criteria for the estimation of crack propagation direction applied to a mixed-mode geometry. Engineering Fracture Mechanics, Volume 143, July 2015, pp. 32–46. doi: 10.1016/j.engfracmech.2015.06.029 .
  14. Malikova L., Vesely V., Seitl S. Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria. International Journal of Fatigue, August 2016, Vol. 89, pp. 99–107. doi: 10.1016/j.ijfatigue.2016.01.010 .
  15. Stepanova L.V. Asymptotics of stresses and strain rates near the tip of a transverse shear crack in a material whose behavior is described by a fractional-linear law. Journal of Applied Mechanics and Technical Physics, January 2009, Vol. 50, Issue 1, pp. 137–146. doi: 10.1007/s10808-009-0019-9 .
  16. Stepanova L.V., Roslyakov P.S. Multi-parameter description of the crack-tip stress field: Analytic determination of coefficients of crack-tip stress expansions in the vicinity of the crack tips of two finite cracks in an infinite plane medium. International Journal of Solids and Structures, September 2016, № 100-101, pp. 11–28. doi: 10.1016/j.ijsolstr.2016.06.032 .
  17. Vesely V., Sobek J., Seitl S. Multi-parameter approximation of the stress field in a cracked body in the more distant surrounding of the crack tip. International Journal of Fatigue, February 2016, Vol. 89, pp. 20–35. doi: 10.1016/j.ijfatigue.2016.02.016 .
  18. Stepanova L.V., Adylina E.M. Stress-strain state in the vicinity of a crack tip under mixed loading. Journal of Applied Mechanics and Technical Physics, September 2014, Volume 55, Issue 5, pp. 885–895. doi: 10.1134/S0021894414050186 .
  19. Stepanova L.V., Yakovleva E.M. Asymptotic stress field in the vicinity of a mixed-mode crack under plane stress conditions for a power-law hardening material. Journal of Mechanics of Materials and Structures, August 2015, Vol. 10, № 3, pp. 367–393. doi: 10.2140/jomms.2015.10.367 .
  20. Sobek J., Frantik P., Vesely V. Analysis of accuracy of Williams series approximation of stress field in cracked body - influence of area of interest around crack-tip on multi-parameter regression performance. Frattura ed Integrita Strutturale, 2017, Vol. 11, No. 39 (2017): January 2017, pp. 129–142. doi: 10.3221/IGF-ESIS.39.14.
  21. Surendra K.V.N., Simha K.R.Y. Design and analysis of novel compression fracture specimen with constant form factor: Edge cracked semicircular disk (ECSD). Engineering Fracture Mechanics, April 2013, Vol. 102, pp. 235–248. doi: 10.1016/j.engfracmech.2013.02.014 .
  22. Akbardoost J., Rastin A. Comprehensive data for calculating the higher order terms of crack tip stress field in disk-type specimens under mixed mode loading. Theoretical and Applied Fracture Mechanics, January 2015, Vol. 76, pp. 75–90. doi: 10.1016/j.tafmec.2015.01.004 .
  23. Eleonskii S.I., Odintsev I.N., Pisarev V.S., Chernov A.V. Issledovanie protsessa rasprostraneniya treshchiny po dannym izmerenii lokal’nogo deformatsionnogo otklika. I. Pole deistvuyushchikh napryazhenii . Uchenye zapiski TsAGI , 2015, Vol. 46, № 7, pp. 55–80. Available at: https://elibrary.ru/item.asp?id=24344617 .
  24. Evaluation of crack-tip fields from DIC data: A parameter study. M. Mokhtarishirazabad International Journal of Fatigue, Volume 89, August 2016, pp. 11–19. doi: 10.1016/j.ijfatigue.2016.03.006 .
  25. Lychak O., Holyns’kiy I. Improving the accuracy of derivation of the Williams’ series parameters under mixed (I+II) mode loading by compensation of measurement bias in the stress field components data. Measurement Science and Technology, December 2016, Vol. 27, Issue 12, p. 125203. doi: 10.1088/0957-0233/27/12/125203 .
  26. Ayatollahi M.R., Moazzami M. Digital image correlation method for calculating coefficients of Williams expansion in compact tension. Optic and Lasers in Engineering, March 2017, Vol. 90, pp. 26–33. doi: 10.1016/j.optlaseng.2016.09.011 .
  27. Chernyatin A.S., Matvienko Yu.G., Lopez-Crespo P. Mathematical and numerical correction of the DIC displacements for determination of stress field along crack front. Procedia Structural Integrity, 2016, Vol. 2, pp. 2650–2658. doi: 10.1016/j.prostr.2016.06.331 .
  28. Malikova L., Vesely V. Estimation of the crack propagation direction in a mixed-mode geometry via multi-parameter fracture criteria. Frattura ed Integrita Strutturale, 2015, Vol. 33, pp. 25–32. doi: 10.3221/IGF-ESIS.33.04 .
  29. Prataprao Patil, Vyasarayani C.P., Ramji M. Linear least square approach for evaluating crack tip fracture parameters using isochromatic and isoclinic data from digital photoelasticity. Optics and Lasers in Engineering, February 2017, Volume 93, pp. 182–194. doi: 10.1016/j.optlaseng.2017.02.003 .
  30. Vivekanandan A., Ramesh K. Study of interaction effects of asymmetric cracks under biaxial loading using digital photoelasticity. Theoretical and Applied Fracture Mechanics, 2019, Vol. 99, pp. 104–117. doi: 10.1016/j.tafmec.2018.11.011 .
  31. Kachanov M., Shafiro B., Tsurkov I. Handbook of Elasticity Solutions. Dordrecht: Springer-Science+Business Media, 2003, 329 p. doi: 10.1007/978-94-017-0169-3 .
  32. Tada H., Paris P.C., Irwin G.R. The stress analysis of cracks handbook. New York: ASME Press, 2000. 696 p. Available at: http://bookfi.net/book/1398445.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Stepanova L.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies