CALCULATION OF THE NUMBER OF PALINDROMS IN A BINARY SYSTEM
- Authors: Lyubimov V.V.1, Melikdzhanyan R.V.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 24, No 4 (2018)
- Pages: 29-32
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/6501
- DOI: https://doi.org/10.18287/2541-7525-2018-24-4-29-32
- ID: 6501
Cite item
Full Text
Abstract
The work deals with symmetric numbers in the binary number system, called palindromes. The aim of the work is to derive the dependence of the number of palindromes on their digit. The dependences of the number of palindromes for even and odd digits are obtained separately.
About the authors
V. V. Lyubimov
Samara National Research University
Author for correspondence.
Email: morenov@ssau.ru
R. V. Melikdzhanyan
Samara National Research University
Email: morenov@ssau.ru
References
- Nishiyama Y. Numerical palindromes and the 196 problem. IJPAM, Vol. 80, no. 3, 2012, pp. 375–384. Available at: https://ijpam.eu/contents/2012-80-3/9/9.pdf .
- Gundina М.А., Gusachek D.А. Primenenie chislovykh palindromov . In: IX Masherovskie chteniya: materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii studentov, aspirantov i molodykh uchenykh, Vitebsk, 25 sentyabrya 2015 g. . Vitebsk: Izd-vo VGU im. P.M. Masherova, 2015, pp. 13–15 .
- Gardner М. Etot levyi, pravyi mir . M.: Mir, 1967, 267 p. .
- Iannazzo B., Meini B. Palindromic matrix polynomials, matrix functions and integral representations. Linear Algebra Appl., Vol. 434, Issue 1, 2011, pp. 174–184. DOI: https://doi.org/10.1016/j.laa.2010.09.013 .
- D.S. Mackey Structured polynomial eigenvalue problems: Good vibrations from good linearizations. SIAM J. Matrix Anal. Appl., Vol. 28, 2006, pp. 1029–1051. Available at: http://eprints.maths.manchester.ac.uk/id/eprint/190 .
- Gemignani L., Noferini V. The Ehrlich-Aberth method for palindromic matrix polynomials represented in the Dickson basis. Linear Algebra Appl., Vol. 438, 2013, pp. 1645–1666. doi: 10.1016/j.laa.2011.10.035 .