A PROBLEM WITH NONLOCAL DISPLACEMENT FOR FRACTIONAL DIFFUSION EQUATION



Cite item

Full Text

Abstract

In this paper, we construct a solution of the inner-boundary problem with a nonlocal shift for the fractional diffusion equation in a rectangular region.

About the authors

F. M. Losanova

Institute of Applied Mathematics
and Automation

Author for correspondence.
Email: morenov@ssau.ru

References

  1. Nakhushev A.M. Uravneniia matematicheskoi biologii . M.: Vyssh. shk., 1995, 301 p. .
  2. Uchaikin V.V. Metod drobnykh proizvodnykh . Ulyanovsk: Artishok, 2008, 512 p. .
  3. Losanova F.M. Zadacha s usloviem Samarskogo dlia uravneniia drobnoi diffuzii v polupolose . Vestnik KRAUNTs. Fiz.-mat. nauki , 2015, 11:2, pp. 15–18. DOI: https://doi.org/10.18454/2079-6641-2015-11-2-17-21 .
  4. Wyss W. The fractional diffusion equation. J. Math. Phys., 27:11 (1986), pp. 2782–2785 .
  5. Kochubei A.N., Eidelman S.D. Zadacha Koshi dlia evoliutsionnykh uravnenii drobnogo poriadka . Dokl. RAN, 2004, 349:2, pp. 159–161 .
  6. Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals, 1996, 7:9, pp. 1461–1477. DOI: http://doi.org/10.1016/0960-0779(95)00125-5 .
  7. Luchko Yu., Gorenflo R. Scale-invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal., 1998, 1:1, pp. 63–78 .
  8. Andreev A.A., Eremin A.S. Kraevaia zadacha dlia uravneniia diffuzii s drobnoi proizvodnoi po vremeni . In: Matematicheskoe modelirovanie i kraevye zadachi, Tr. dvenadtsatoi mezhvuz. konf. . Samara: SamGTU, 2004, Part 3, pp. 3–9 .
  9. Pskhu A.V. Reshenie kraevykh zadach dlia uravneniia diffuzii drobnogo poriadka metodom funktsii Grina . Differentsial’nye uravneniia , 2003, 39:10, pp. 1509–1513. DOI: https://doi.org/10.1023/B:DIEQ.0000017925.68789.e9
  10. Pskhu A.V. Reshenie pervoi kraevoi zadachi dlia uravneniia diffuzii drobnogo poriadka . Differentsial’nye uravneniia , 2003, 39:9, pp. 1359–1363. DOI: https://doi.org/10.1023/B:DIEQ.0000012703.45373.aa .
  11. Samko S.G., Kilbas A.A., Marichev O.I. Integraly i proizvodnye drobnogo poriadka i nekotorye ikh prilozheniia . Minsk: Nauka i tekhnika, 1987, 688 p. .
  12. Pskhu A.V. Uravneniia v chastnykh proizvodnykh drobnogo poriadka . M.: Nauka, 2005, 199 p. .
  13. Samarskii A.A. O nekotorykh problemakh teorii differentsial’nykh uravnenii . Differentsial’nye uravneniia , 1980, Vol. 16, no. 11, pp. 1925–1935 .
  14. Ionkin N.I. Reshenie odnoi zadachi teploprovodnosti s neklassicheskim kraevym usloviem . Differentsial’nye uravneniia , 1977, 13:2, pp. 294–304. DOI: https://doi.org/10.1023/B:DIEQ.0000047025.64101.16 .
  15. Pulkina L.S. Nelokal’naia zadacha s integral’nymi usloviiami dlia giperbolicheskogo uravneniia . Differentsial’nye uravneniia , 2004, 40:7, pp. 947–953. DOI: https://doi.org/10.1023/B:DIEQ.0000047025.64101.16 .
  16. Nakhushev А.М. Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh . M.: Nauka, 2006, 287 p. .
  17. Krasnov M.L. Integral’nye uravneniia . M.: Nauka, 1975, 304 p. .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Losanova F.M.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies