ON A PENDULUM MOTION IN MULTI-DIMENSIONAL SPACE. PART 1. DYNAMICAL SYSTEMS
- Authors: Shamolin M.V.1
-
Affiliations:
- Institute of Mechanics, Lomonosov Moscow State University
- Issue: Vol 23, No 3 (2017)
- Pages: 41-64
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/5500
- DOI: https://doi.org/10.18287/2541-7525-2017-23-3-41-64
- ID: 5500
Cite item
Full Text
Abstract
In the proposed cycle of work, we study the equations of the motion of dynamically symmetric fixed n-dimensional rigid bodies–pendulums located in a nonconservative force fields. The form of these equations is taken from the dynamics of real fixed rigid bodies placed in a homogeneous flow of a medium. In parallel, we study the problem of the motion of a free n-dimensional rigid body also located in a similar force fields. Herewith, this free rigid body is influenced by a nonconservative tracing force; under action of this force, either the magnitude of the velocity of some characteristic point of the body remains constant, which means that the system possesses a nonintegrable servo constraint. In thit work, we derive the general multi-dimensional dynamic equations of the systems under study.
About the authors
M. V. Shamolin
Institute of Mechanics, Lomonosov Moscow State University
Author for correspondence.
Email: morenov.sv@ssau.ru
Russian Federation
References
- Shamolin M.V. Sluchai integriruemosti, sootvetstvuiushchie dvizheniiu maiatnika na ploskosti . Vestnik SamGU. Estestvennonauchnaia seriia , 2015, no. 10(132), pp. 91–113 .
- Shamolin M.V. Sluchai integriruemosti, sootvetstvuiushchie dvizheniiu maiatnika v trekhmernom prostranstve . Vestnik SamGU. Estestvennonauchnaia seriia , 2016, no. 3–4, pp. 75–97 .
- Shamolin M.V. Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole . Itogi nauki i tekhniki. Ser.: ”Sovremennaia matematika i ee prilozheniia. Tematicheskie obzory”. T. 125. ”Dinamicheskie sistemy”. , 2013, pp. 5–254 .
- Pokhodnya N.V., Shamolin M.V. Nekotorye usloviia integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiiakh . Vestnik SamGU. Estestvennonauchnaia seriia , 2013, no. 9/1(110), pp. 35–41 .
- Shamolin M.V. Mnogoobrazie tipov fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuiushchego s soprotivliaiushcheisia sredoi . Doklady RAN , 1996, Vol. 349, no. 2, pp. 193–197 .
- Shamolin M.V. Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniia . Fund. i prikl. mat. , 2008, Vol. 14, no. 3, pp. 3–237 .
- Arnold V.I., Kozlov V.V., Neyshtadt A.I. Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki . M.: VINITI, 1985, 304 p. .
- Trofimov V.V. Simplekticheskie struktury na gruppakh avtomorfizmov simmetricheskikh prostranstv . Vestn. Mosk. un–ta. Ser. 1. Matematika. Mekhanika , 1984, no. 6, pp. 31–33 .
- Trofimov V.V., Shamolin M.V. Geometricheskie i dinamicheskie invarianty integriruemykh gamil’tonovykh idissipativnykh sistem .
- Fund. i prikl. mat. , 2010, Vol. 16, no. 4, pp. 3–229 .
- Shamolin M.V. Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela . M.: Izd-vo ”Ekzamen ”, 2007, 352 p. .
- Shamolin M.V. Nekotorye model’nye zadachi dinamiki tverdogo tela pri vzaimodeistvii ego so sredoi . Prikl. mekhanika , 2007, Vol. 43, no. 10, pp. 49–67 .
- Shamolin M.V. Novye sluchai integriruemosti sistem s dissipatsiei na kasatel’nykh rassloeniiakh k dvumernoi I trekhmernoi sferam . Doklady RAN , 2016, Vol. 471, no. 5, pp. 547–551 .
- Shamolin M.V. Novye sluchai integriruemykh sistem s dissipatsiei na kasatel’nom rassloenii k mnogomernoi sfere . Doklady RAN , 2017, Vol. 474, no. 2, pp. 177–181 .
- Shamolin M.V. Novye sluchai integriruemykh sistem s dissipatsiei na kasatel’nom rassloenii dvumernogo mnogoobraziia . Doklady RAN , 2017, Vol. 475, no. 5, pp. 519–523 .