PROBLEM WITH DYNAMIC BOUNDARY CONDITIONS FOR A HYPERBOLIC EQUATION



Cite item

Full Text

Abstract

We consider an initial-boundary problem with dynamic boundary condition for a hyperbolic equation in a rectangle. Dynamic boundary condition represents a relation between values of derivatives with respect of spacial variables of a required solution and first-order derivatives with respect to time variable. The main result lies in substantiation of solvability of this problem. We prove the existence and uniqueness of a generalized solution. The proof is based on the a priori estimates obtained in this paper, Galyorkin’s procedure and the properties of Sobolev spaces.

About the authors

V. A. Kirichek

Samara National Research University

Author for correspondence.
Email: morenov@ssau.ru
Russian Federation

L. S. Pulkina

Samara National Research University

Email: morenov@ssau.ru
Russian Federation

References

  1. Tikhonov A.N., Samarsky A.A. Uravneniia matematicheskoi fiziki . M.: Nauka, 1977 .
  2. Tobias Louw, Scott Whitney, Anu Subramanian, and Hendrik Viljoen. Forced wave motion with internal and boundary damping. Journal of applied physics, 111,014702 (2012) .
  3. Korpusov M.O. Razrushenie v neklassicheskikh volnovykh uravneniiakh . М.: URSS, 2010 .
  4. Doronin G.G., Lar’kin N.A., Souza A.J. A hyperbolic problem with nonlinear second-order boundary damping. EJDE, 28, 1–10 (1998) .
  5. Beylin A.B., Pulkina L.S. Zadacha o prodol’nykh kolebaniiakh sterzhnia s dinamicheskimi granichnymi usloviiami . Vestnik SamGU , 2014, no. 3(114), pp. 9–19 .
  6. Pulkina L.S. Zadacha s dinamicheskim nelokal’nym usloviem dlia psevdogiperbolicheskogo uravneniia . Izvestiia vuzov. Matematika , 2016, no. 9, pp. 42–50 .
  7. Ladyzhenskaya O.A. Kraevye zadachi matematicheskoi fiziki . M.: Nauka, 1973 .
  8. Beylin S.А. Ob odnoi kraevoi zadache dlia volnovogo uravneniia . Vestnik SamGU , 2011, no. 5(86), pp. 12–17 .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 1970 Kirichek V.A., Pulkina L.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies