NUMERICAL INVESTIGATION OF THE SHOWALTER - SIDOROV PROBLEM FOR NONLINEAR DIFFUSION EQUATION



Cite item

Full Text

Abstract

The article concerns a numerical investigation of nonlinear diffusion mod- el in the circle. Nonlinear diffusion equation simulates the change of potential concentration of viscoelastic fluid, which is filtered in a porous media. This equa- tion is a semilinear Sobolev type equation. Sobolev type equations constitute a vast area of non-classical equations of mathematical physics. Theorem of exis- tence and uniqueness of a weak generalized solution to the Showalter - Sidorov problem for nonlinear diffusion equation is stated. The algorithm of numerical solution to the problem in a circle was developed using the modified Galerkin method. There is a result of computational experiment in this article.

About the authors

N.A. Manakova

Самарский государственный университет

Author for correspondence.
Email: morenov.sv@ssau.ru

A.A. Selivanova

Самарский государственный университет

Email: morenov.sv@ssau.ru

References

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2015 Manakova N., Selivanova A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies