NUMERICAL INVESTIGATION OF THE SHOWALTER - SIDOROV PROBLEM FOR NONLINEAR DIFFUSION EQUATION
- Authors: Manakova N.1, Selivanova A.1
-
Affiliations:
- Самарский государственный университет
- Issue: Vol 21, No 10 (2015)
- Pages: 24-28
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/4446
- DOI: https://doi.org/10.18287/2541-7525-2015-21-10-24-28
- ID: 4446
Cite item
Full Text
Abstract
The article concerns a numerical investigation of nonlinear diffusion mod- el in the circle. Nonlinear diffusion equation simulates the change of potential concentration of viscoelastic fluid, which is filtered in a porous media. This equa- tion is a semilinear Sobolev type equation. Sobolev type equations constitute a vast area of non-classical equations of mathematical physics. Theorem of exis- tence and uniqueness of a weak generalized solution to the Showalter - Sidorov problem for nonlinear diffusion equation is stated. The algorithm of numerical solution to the problem in a circle was developed using the modified Galerkin method. There is a result of computational experiment in this article.
About the authors
N.A. Manakova
Самарский государственный университет
Author for correspondence.
Email: morenov.sv@ssau.ru
A.A. Selivanova
Самарский государственный университет
Email: morenov.sv@ssau.ru