DETERMINATION OF THE WILLIAMS SERIES EXPANSION’S COEFFICIENTS USING DIGITAL PHOTOELASTICITY METHOD AND FINITE ELEMENT METHOD
- Authors: Stepanova L.V.1, Belova O.N.1, Turkova V.A.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 25, No 3 (2019)
- Pages: 62-82
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/7655
- DOI: https://doi.org/10.18287/2541-7525-2019-25-3-62-82
- ID: 7655
Cite item
Full Text
Abstract
In the present work, photoelastic and finite element methods have been employed to study the near crack tip fields in isotropic linear elastic cracked bodies under mixed mode loading. The investigated fracture results have been obtained for a series of cracked specimens by testing plates with two parallel cracks, two inclined parallel cracks, three-point bend specimens, four-point bend specimens, inclined edge crack triangular shape specimens subjected to symmetric three point bend loading. The multi-parameter Williams series expansion is used for the crack tip field characterization. Digital photoelasticity method is utilized for determination of the Williams series expansion’s coefficients. The unknown coefficients in the multi-parameter equation are determined using a linear least squares method in an over-deterministic manner. Together with the experimental determination of the fracture mechanics parameters finite element method is invoked to describe the crack tip stress field. Coefficients of higher order terms are either found numerically by finite element method. A good agreement is found between the numerical and experimental results. The significant advantages using multi-parameter equations in the analysis of the stress field are shown and the errors that a study with a limited number of terms produce is demonstrated. The comparison with finite element analysis highlighted the importance and precision of the photoelastic observation for the evaluation of the fracture mechanics parameters. The experimental SIF, T-stress values and coefficients of higher-order terms estimated using the digital photoelasticity method for the extensive series of cracked specimens are compared with finite element analysis (FEA) results, and are found to be in good agreement.
About the authors
L. V. Stepanova
Samara National Research University
Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0002-6693-3132
Doctor of Physical and Mathematical Sciences, professor of the Department of Mathematical Modelling in Mechanics
O. N. Belova
Samara National Research University
Email: morenov@ssau.ru
ORCID iD: 0000-0002-4492-223X
postgraduate student of the Department of Mathematical Modelling in Mechanics
V. A. Turkova
Samara National Research University
Email: morenov@ssau.ru
ORCID iD: 0000-0002-6975-9440
senior lecturer of the Department of Mathematical Modelling in Mechanics
References
- Jobin T.M., Khanderi S.N., Ramji M. Experimental of the strain intensity factor at the inclusion tip using digital elasticity. Optics and Lasers in Engineering, 2020, Vol. 126, p. 105855 .
- Jobin T.M., Khaderi S.N., Ramji M. Experimental evaluation of the strain intensity factor at the rigid line inclusion tip embedded in an epoxy matrix using digital image correlation. Theoretical and Applied Fracture Mechanics, 2019. Volume 106. doi: 10.1016/j.tafmec.2019.102425 .
- Brinez J.C., Martinez A.R., Branch J.W. Computational hydrid phase shifting technique applied to digital photoelasticity. Optik - International Journal for Light and Electron Optics, 2018, Vol. 157, pp. 287–297. doi: 10.1016/j.ijleo.2017.11.060 .
- Hariprasad M.P., Ramesh K. Analysis of contact zones from whole field isochromatics using reflection photoelasticity. Optics and Lasers in Engineering, 2018, Vol. 105, pp. 86–92. doi: 10.1016/j.optlaseng.2018.01.005 .
- Ramesh K., Pandey A. An improved normalization technique for white light photoelasticity. Optics and Lasers in Engineering, 2018, Vol. 109, pp. 7–16. doi: 10.1016/j.optlaseng.2018.05.004 .
- Sung P.C., Wang W.C., Hwang C.H., Lai G.-T. A low-level stress measurement method by integrating white light photoelasticity and spectometry. Optics and Laser Technology, 2018, Vol. 98, pp. 33–45. doi: 10.1016/j.optlastec.2017.07.022
- Patil P., Vysasarayani C.P., Ramji M. Linear least squares approach for evaluating crack tip fracture parameters using isochromatic and isoclinic data from digital photoelasticity. Optics and Lasers in Engineering, 2017, Vol. 93, pp. 182–194. doi: 10.1016/j.optlaseng.2017.02.003 .
- Ramakrishnan V., Ramesh K. Scanning schemes in white light Photoelasticity. Part II: Novel fringe resolution guided scanning scheme. Optics and Lasers in Engineering, 2017, Vol. 92, pp. 141–149. doi: 10.1016/j.optlaseng.2016.05.010 .
- Ramakrishnan V., Ramesh K. Scanning schemes in white light Photoelasticity. Part I: Critical assessment of existing schemes. Optics and Lasers in Engineering, 2017, Vol. 92, pp. 129–140. doi: 10.1016/j.optlaseng.2016.06.016 .
- Katachi B., Choupani N., Khalil-Allafi J., Baghani M. Photostress analysis of stress-induced martensite phase transformation in superelastic NiTi. Materials and Science and Engineering, 2017, Vol. 688, pp. 202–209. doi: 10.1016/j.msea.2017.01.111 .
- Googe S.Yu., Tabolin I.S., Shron L.B. Fotouprugost’ i traektoriya treshchin razrusheniya. Chast’ 1. Teoreticheskie osnovy . Uchenye zapiski Krymskogo inzhenerno-pedagogicheskogo universiteta , 2017, № 4(58), pp. 120–128. Available at: https://elibrary.ru/item.asp?id=32400940 .
- Googe S.Yu., Tabolin I.S., Shron L.B. Fotouprugost’ i traektoriya treshchin razrusheniya. Chast’ 2. Prodolzhenie. Rezul’taty eksperimenta . Uchenye zapiski Krymskogo inzhenerno-pedagogicheskogo universiteta , 2018, № 1(59), pp. 176–182. Available at: https://elibrary.ru/item.asp?id=34958078 .
- Demidov A.S. Metod fotouprugosti i ego primenenie v laboratoriyakh MAI . Dvigatel’, 2018, no. 3(117), pp. 10–11. Available at: http://engine.aviaport.ru/issues/117/pics/pg10.pdf .
- Bryukhovetskaya E.V., Konischeva O.V., Kudryavcev I.V. Issledovanie napryazhennogo sostoyaniya zheleznodorozhnogo rel’sa trekhekspozitsionnym metodom golograficheskoi fotouprgosti . Zhurnal Sibirskogo federal’nogo universiteta. Seriya: Tekhnika i tekhnologii , 2019, Vol. 12, № (3), pp. 323–330. doi: 10.17516/1999-494X-0139 .
- Chelyapina O.I., Isachenko V.M. Avtomatizatsiya protsessov issledovaniya ostatochnykh napryazhenii metodom tsifrovoi fotouprugosti . Prilozhenie k zhurnalu Vestnik Tambovskogo universiteta. Seriya Estestvennye i tekhnicheskie nauki , 2018, pp. 307–309. doi: 10.20310/1810-0198-2018-23-122p-307-309 .
- Pisarev V.S., Matvienko Y.G., Eleonsky S.I., Odintsev I.N. Combining the crack compliance method and speckle interferometry data for determination of stress intensity factors and T-stress. Engineering Fracture Mechanics, 2017, Vol. 179, pp. 348–374. doi: 10.1016/j.engfracmech.2017.04.029 .
- Vasco-Olmo J.M., Yang B., James M.N., Diaz F.A. Investigation of effective stress intensity factors during overload fatigue cycles using photoelastic and DIC techniques. Theoretical and Applied Fracture Mechanics, 2018, Vol. 97, pp. 73–86. doi: 10.1016/j.tafmec.2018.07.011 .
- Advancement of Optical Methods and Digital Image Correlation in Experimental Mechanics. Luciano Lamberti, Ming-Tzer Lin and others (Eds.). Springer, 2018, 242 p. doi: 10.1007/978-3-319-41600-7 .
- Molimard J. Experimental Mechanics of Solids and Structures. London: Willey, 2016. 149 p. Available at: https://b-ok.cc/book/2713894/fbbb66 .
- Experimental Stress Analysis for Materials and Structures: Stress Analysis Models for Developing Design Methodologies (Springer Series in Solid and Structural Mechanics). New York: Springer, 2015. 498 p. doi: 10.1007/978-3-319-06086-6 .
- Grediac M., Hild F. Full-field Measurements and Identification in Solid Mechanics. London: ISTE, 2011. Available at: https://avidreaders.ru/read-book/full-field-measurements-and-identification-in.html .
- Pierron F., Grediac M. The Virtual Fields Method, Extracting Constitutive Mechanical Parameters from Full-Field Deformation Measurements. New York: Springer, 2012. doi: 10.1007/978-1-4614-1824-5.
- Eksperimental’nye issledovaniya svoistv materialov pri slozhnykh termomekhanicheskikh vozdeistviyakh. Pod red. V.E. Vil’demana . М.: Fizmatlit, 2012, 204 p. Available at: https://www.rfbr.ru/rffi/ru/books/o_1782532#1 .
- Advancement of Optical Methods in Experimental Mechanics, Volume 3: Proceedings of the 2016 Annual Conference on Experimental and Applied Mechanics. Yoshida S., Lamberti L., Sciammarella C. (Eds.). Springer, 2017. 219 p. doi: 10.1007/978-3-319-41600-7 .
- Advancement of Optical Methods in Experimental Mechanics, Vol. 3: Proceedings of the 2014 Annual Conference on Experimental and Applied Mechanics. Helena Jin, Cesar Sciammarella (Eds.). Springer, 2015, 421 p. doi: 10.1007/978-3-319-06986-9 .
- Rotating Machnery, Hybrid Test Methods, Vibro-Acoustics and Laser Vibrometry, Volume 8. Proceedings of the 34th IMAC, A Conference and Exposition on Dynamics of Multiphysical Systems: From Active Materials to Vibroacoustic. Berlin: Springer, 2016. 462 p. doi: 10.1007/978-3-319-54648-3 .
- Shukla A., Dally J.W. Experimental Solid Mechanics. College House Enterprises, LLC, 2014. 688 p.
- Chernyatin A.S., Razumovsky I.A., Matvienko Yu.G. Otsenka razmerov zony neuprugogo deformirovaniya u vershiny treshchiny na osnove analiza polei peremeshchenii . Zavodskaya laboratoriya. Diagnostika materialov , 2016, Vol. 82, № 12, pp. 45–51. Available at: https://www.zldm.ru/jour/article/view/348 .
- Razumovskii I.A., Chernyatin A.S., Fomin A.V. Eksperimental’no-raschetnye metody opredeleniya napryazhenno-deformirovannogo sostoyaniya elementov konstruktsii . Zavodskaya laboratoriya. Diagnostika materialov , 2013, Vol. 79, № 10, pp. 57–64. Available at: http://old-zldm.ru/content/article.php?ID=1664 .
- Grabois T.M., Heggers J., Ponson L., Hild F., Filho R.D.T. On the validation of the integrated DIC with taperd double cantilever beams test. Engineering Fracture Mechanics, 2018, Vol. 191, pp. 311–323. doi: 10.1016/j.engfracmech.2017.12.015 .
- Levin V.A. Modeli i metody. Obrazovanie i razvitie defektov. Nelineinaya vychislitel’naya mekhanika prochnosti. Tom I . M.: Fizmatlit, 2015, 456 p. .
- Levin V.A., Vershinin V.A. Chislennye metody. Parallel’nye vychisleniya na EVM. Nelineinaya vychislitel’naya mekhanika prochnosti. Tom II . М.: Fizmatlit, 2015, 544 p. .
- Galvanetto U., Aliabadi M.H.F. (Editors). Multiscale Modeling in Solid Mechanics: Computational Approaches (Computational and Experimental Methods in Structures). London: Imperial College Press, 2009. 352 p. Available at: https://ru.b-ok.org/book/1059039/7e5258 .
- Carlomagno G.M., Poljak D., Brebbia C.A. Computational Methods and Experimental Measurements XVII (Wit Transactions on Modelling and Simulation). WIT Press, 2015. 564 p. .
- Vesely V., Sobek J., Seitl S. Multi-parameter approximation of the stress field in a cracked body in the moredistant surrounding of the crack tip. International Journal of Fatigue, 2016, Vol. 89, pp. 20-35. doi: 10.1016/j.ijfatigue.2016.02.016 .
- Malikova L., Vesely V., Seitl S. Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria. International Journal of Fatigue, 2016, Vol. 89, pp. 99–107. doi: 10.1016/j.ijfatigue.2016.01.010 .
- Malikova L. Multiparameter fracture criteria for the estimation of crack propagation direction applied to a mixed-mode geometry. Engineering Fracture Mechanics, 2015, Vol. 143, pp. 32-46 .
- Chernyatin A.S. Otsenka vzaimnogo vliyaniya peresekayushchikhsya skvoznykh treshchin . Izvestiya vysshikh uchebnykh zavedenii. Mashinostroenie , 2015, № 11(668), pp. 62–67. Available at: https://elibrary.ru/item.asp?id=24863396 .
- Stepanova L.V., Roslyakov P.S. Polnoe asimptoticheskoe razlozhenie M. Uil’yamsa u vershin dvukh kollinearnykh treshchin konechnoi dliny v beskonechnoi plastine . Vestnik Permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Mekhanika , 2015, № 4, pp. 188–225. doi: 10.15593/perm.mech/2015.4.12 .
- Lopez-Moreno A., Zanganeh M. Evaluation of crack-tip fields from DIC data: A parameter study. International Journal of Fatigue, 2016, Vol. 89, pp. 11–19. doi: 10.1016/j.ijfatigue.2016.03.006 .
- Pisarev V.S., Matvienko Y.G., Eleonsky S.I., Odintsev I.N. Combining the crack compliance method and speckle interferometry data for determination of stress intensity factors and T-stress. Engineering Fracture Mechanics, 2017, Vol. 179, pp. 348–374. doi: 10.1016/j.engfracmech.2017.04.029 .
- Pisarev V., Odintsev I., Eleonsky S., Apalkov A. Residual stress determination by optical interferometric measurements of hole diameter increments. Optics and Lasers in Engineering, 2018, Vol. 110, pp. 437–456. doi: 10.1016/j.optlaseng.2018.06.022 .
- Odintsev I.N., Plugatar T.P. Compensation for rigid body displacements in study of local deformations using electronic speckle pattern interferometry. IOP Conference Series: Materials Science and Engineering, 2019, Vol. 489, Issue 1, p. 012021. doi: 10.1088/1757-899X/489/1/012021 .
- Odintsev I., Apal’kov A., Komarov A., Pluginuri T., Usov S. Primenenie optiko-korrelyatsionnykh metodov v zadachakh eksperimental’noi mekhaniki . Progressivnye tekhnologii i sistemy mashinostroeniya , 2015, № 1(51), pp. 152–160. Available at: https://elibrary.ru/item.asp?id=23937434 .
- Eleonskii S.I., Odintsev I.N., Pisarev V.S., Chernov A.V. Issledovanie protsessa rasprostraneniya treshchiny po dannym izmerenii lokal’nogo deformatsionnogo otklika. I. Pole deistvuyushchikh napryazhenii . Uchenye zapiski TsAGI , 2015, Vol. 46, № 7, pp. 55–80. URL: https://elibrary.ru/item.asp?id=24344617 .
- Hello G., Tahar M.B., Roelandt J.-M. Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium. International Journal of Solids and Structures, 2012, Vol. 49, pp. 556–566. doi: 10.1016/j.ijsolstr.2011.10.024 .
- Hello G. Derivation of complete crack-tip stress expansions from Westergaard-Sanford solutions. International Journal of Solids and Structures, 2018, Vol. 144–145, pp. 265–275. doi: 10.1016/j.ijsolstr.2018.05.012 .
- Stepanova L.V. Asimptoticheskii analiz polya napryazhenii u vershiny treshchiny (uchet vysshikh priblizhenii) = Asymptotic analysis of the crack tip stress field consideration of higher order terms. Numerical Analysis and Applications, 2019, Vol. 12(3), pp. 284–296. DOI: https://doi.org/10.15372/SJNM20190307 .
- Stepanova L.V. Vliyanie vysshikh priblizhenii v asimptoticheskom razlozhenii M. Uil’yamsa polya napryazhenii na opisanie napryazhenno-deformirovannogo sostoyaniya u vershiny treshchiny. Chast’ I . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2019, Vol. 25, № 1, pp. 63–79. doi: 10.18287/2541-7525-2019-25-1-63-79 .
- Stepanova L.V. Vliyanie vysshikh priblizhenii v asimptoticheskom razlozhenii M. Uil’yamsa polya napryazhenii na opisanie napryazhenno-deformirovannogo sostoyaniya u vershiny treshchiny. Chast’ II . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2019, Vol. 25, № 1, pp. 80–96. DOI: https://doi.org/10.18287/2541-7525-2019-25-1-80-96 .
- Dolgikh V.S., Pulkin A.V., Mironova E.A., Peksheva A.A., Stepanova L.V. Teoretiko-eksperimental’noe issledovanie napravleniya rosta treshchiny. Chast’ I . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2019, Vol. 2, № 2, pp. 30–54. doi: 10.18287/2541-7525-2019-25-2-30-54 .
- Dolgikh V.S., Pulkin A.V., Mironova E.A., Peksheva A.A., Stepanova L.V. Teoretiko-eksperimental’noe issledovanie napravleniya rosta treshchiny. Chast’ II . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2019, Vol. 25, № 2, pp. 55–74. doi: 10.18287/2541-7525-2019-25-2-55-74 .
- Karihaloo B.L., Xiao Q.Z. Accurate determination of the coefficients of elastic crack tip asymptotic field by a hibrid crack element with p-adaptivity. Engineering Fracture Mechanics, 2001, Vol. 68, pp. 1609–1630. doi: 10.1016/S0013-7944(01)00063-7 .
- Stepanova L.V., Roslyakov P.S. Complete Williams asymptotic expansion of the stress field near the crack tip: analytical solutions, interference-optic methods and numerical experiments. AIP Conference Proceedings of the 10th International Conference on Mechanics, Resource and Diagnostics of Materials and Structures, 2016, p. 030029. doi: 10.1063/1.4967050 .
- Stepanova L.V., Yakovleva E.M. Asymptotic stress field in the vicinity of a mixed-mode crack under plane stress conditions for a power-law hardening material. Journal of Mechanics of Materials and Structures, 2015, Vol. 10, № 3, pp. 367–393. doi: 10.2140/jomms.2015.10.367 .
- Vivekanandan A., Ramesh K. Study of interaction effects of asymmetric cracks under biaxial loading using digital photoelasticity. Theoretical and applied Fracture Mechanics, 2019, Vol. 99, pp. 104–117. doi: 10.1016/j.tafmec.2018.11.011 .
- Stepanova L.V., Roslyakov P.S., Lomakov P.N. A photoelastic study for multiparametric analysis of the near crack tip stress field under mixed mode loading. Procedia Structural Integrity, 2016, Vol. 2, pp. 1797–1804. doi: 10.1016/j.prostr.2016.06.226 .
- Kosygin A.N., Kosygina L.N. Tsifrovaya obrabotka eksperimental’nykh interferogramm, poluchennykh metodom fotouprugosti . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2019, Vol. 25, № 2, pp. 75–91. DOI: http://dx.doi.org/10.18287/2541-7525-2019-25-2-75-91 .
- Ramesh K., Gupta M., Kelkar A.A. Evaluation of stress field parameters in fracture mechanics by photoelastisity-revisited. Engineering Fracture Mechanics, 1997, Vol. 56, Issue 1, pp. 25–41, 43–45. DOI: https://doi.org/10.1016/S0013-7944(96)00098-7 .
- Gupta M., Alderliesten R.C., Benedictus R. A review of T-stress and its effects in fracture mechanics. Solid State Phenomena, 2015, Vol. 134, pp. 218–241. doi: 10.1016/j.engfracmech.2014.10.013 .
- Surendra K.V.N., Simha K.R.Y. Design and analysis of novel compression fracture specimen with constant form factor: Edge cracked semicircular disk (ECSD). Engineering Fracture Mechanics, 2013, Vol. 102, pp. 235–248. doi: 10.1016/j.engfracmech.2013.02.014 .