DIGITAL PROCESSING OF INTERFEROGRAMS OBTAINED BY THE PHOTOELASTICITY METHOD



Cite item

Full Text

Abstract

The article is devoted to the digital processing interferograms (isochromatic fringe patterns) obtained by the photoelasticity method. An application to interpretate the isochromatic fringe patterns is developed. It allows us to automate this procedure, gets to avoid the routine and time-consuming work. The features of the developed software package are described in detail by means of the classic problem of a diametrically compressed disk. The application’s algorithm includes following main steps: image pre-processing, localization interference fringe, fringe tracing. The application creates a text file containing all the necessary data to further determine the stress-strain state (isochromatic fringe’s number and locus of fringes).

About the authors

A. N. Kosygin

Samara National Research University

Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0002-0776-7939

Master’s Degree student of the the Department of Mathematical Modelling in Mechanics

L. N. Kosygina

Samara National Research University

Email: morenov@ssau.ru
ORCID iD: 0000-0002-9831-0175

Master’s Degree student of the the Department of Mathematical Modelling in Mechanics

References

  1. Frocht M.M. Fotouprugost’. Polyarizatsionno-opticheskii metod issledovaniya napryazhenii: ucheb. posobie . M.: Gostekhizdat, 1948, Vol. 2, 440 p. Available at: https://es.b-ok.cc/book/3226870/10c5fc .
  2. Khaimova-Malkova R.I. Metodika issledovaniya napryazhenii polyarizatsionno-opticheskim metodom . M.: Nauka, 1970, 116 p. Available at: https://pl.b-ok.cc/book/3573106/fd4bf7 .
  3. Alexandrov A.Ya. Polyarizatsionno-opticheskie metody mekhaniki deformiruemogo tela . M.: Nauka, 1973, 576 p. Available at: https://elibrary.ru/item.asp?id=35626697 .
  4. Schemm J.B., Vest C.M. Fringe pattern recognition and interpretation using nonlinear regression analysis. Applied optics, 1983, V. 22, no. 18, pp. 2850–2853. doi: 10.1364/AO.22.002850 .
  5. Chen T.Y., Taylor C.E. Computerised fringe analysis in photomechanics. Experimental Mechanics, 1989, V. 29, no 3, pp. 323–329. doi: 10.1007/BF02321416 .
  6. Toh S.L., Tang S.H., Hovanesian J.D. Computarised photoelastic fringe multiplication. Experimental Techniques, 1990, V. 14, Issue 4, pp. 21–23. doi: 10.1111/j.1747-1567.1990.tb01108.x .
  7. Razumovsky I.A. Interferentsionno-opticheskie metody mekhaniki deformiruemogo tverdogo tela . M.: Izd-vo MGTU im. N.E. Baumana, 2007, 240 p. Available at: https://craterbook.xyz/books/interferentsionno-opticheskie .
  8. Bruno L. Full-field measurement with nanometric accuracy of 3D superficial displacements by digital profile correlation: A powerful tool for mechanics of materials. Materials and Design, 2018, V. 159, pp. 170–185 .
  9. Weller D. Self-restraint hot cracking test for aluminum alloys using digital image correlation. Procedia CIRP, 2018, V. 74, pp. 430–433. doi: 10.1016/j.procir.2018.08.165.
  10. Speckle-interferometric phase fringe patterns de-noising by using fringes direction and curvature. H. Jiang Optics and Lasers in Engineering, 2019, V. 119, pp. 30–36. doi: 10.1016/S0030-4018(99)00116-9 .
  11. Stepanova L.V., Roslyakov P.S. Polnoe asimptoticheskoe razlozhenie M. Uil’yamsa u vershin dvukh kollinearnykh treshchin konechnoi dliny v beskonechnoi plastine . Vestnik Permskogo natsional’nogo tekhnicheskogo universiteta. Mekhanika , 2015, no 4, pp. 188–225. doi: 10.15593/perm.mech/2015.4.12 .
  12. Stepanova L.V., Adylina E.M. Napryazhenno-deformirovannoe sostoyanie v okrestnosti vershiny treshchiny v usloviyakh smeshannogo nagruzheniya . Prikladnaya mekhanika i tekhnicheskaya fizika , 2014, V. 55, no 5, pp. 885–895. Available at: https://elibrary.ru/item.asp?id=22318154
  13. .
  14. Kosygina L.N. Asimptoticheskoe predstavlenie polya napryazhenii u vershiny treshchiny dlya plastiny s bokovymi nadrezami: teoreticheskoe issledovanie i vychislitel’nyi eksperiment . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2018, no. 2. pp. 55–66. doi: 10.18287/2541-7525-2018-24-2-55-66 .
  15. Stepanova L.V. Asimptoticheskii analiz polya napryazhenii u vershiny treshchiny (uchet vysshikh priblizhenii) . Sibirskii zhurnal vychislitel’noi matematiki , 2019, V. 22, no. 3, pp. 345-361. doi: 10.15372/SJNM20190307 .
  16. Surendra K.V.N., Simha K.R.Y. Digital Image Analysis around isotropic points for photoelastic pattern recognition. Optic Engineering, 2015, V. 54, no 8, p. 081209. doi: 10.1117/1.OE.54.8.081209 .
  17. Image Processing Algorith for Fringe Analysis in Phototelasticity. S. Alsiya Scholars Journal of Engineering and Technology, 2016, V. 4(7), pp. 325–328. doi: 10.21276/sjet.2016.4.7.5 .
  18. Stepanova L.V., Roslyakov P.S., Lomakov P.N. A Photoelastic Study for Multiparametric Analysis of the Near Crack Tip Stress Field Under Mixed Mode Loading. Procedia Structural Integrity, 2016, V. 2, pp. 1797—1804. doi: 10.1016/j.prostr.2016.06.226 .
  19. Stepanova L.V., Dolgich V.S. Tsifrovaya obrabotka rezul’tatov optoelektronnykh izmerenii. Metod fotouprugosti i ego primenenie dlya opredeleniya koeffitsientov mnogoparametricheskogo asimptoticheskogo razlozheniya M. Uil’yamsa polya napryazhenii . Vestnik Samarskogo tekhnicheskogo universiteta. Ser.: Fiziko-matematicheskie nauki , 2017, V. 221(4), pp. 717–735. doi: 10.14498/vsgtu1544 .
  20. Stepanova L.V. Asymptotic analysis of the stress field at a crack tip in a linearly elastic material: experimental determination of williams expansion coefficients. Diagnostics, Resource and Mechanics of materials and structures, 2018, no 2, pp. 29–41. doi: 10.17804/2410-9908.2018.2.029-041 .
  21. Vivekanandan A., Ramesh K. Study of interaction effects of asymmetric cracks under biaxial loading using digital photoelasticity. Theoretical and Applied Fracture mechanics, 2019, V. 99, pp. 104–117. doi: 10.1016/j.tafmec.2018.11.011.
  22. Kostyuk Yu.L., Kon A.B., Novikov Yu.L. Algoritmy vektorizatsii tsvetnykh rastrovykh izobrazhenii na osnove triangulyatsii i ikh realizatsiya . Vestnik Tomskogo gosudarstvennogo universiteta , 2003, no. 280, pp. 275–280. Available at: https://elibrary.ru/item.asp?id=16460252 .
  23. Gonzalez R.S., Woods R.E. Tsifrovaya obrabotka izobrazhenii . M.: Tekhnosfera, 2012, 1104 p. Available at: http://www.technosphera.ru/files/book_pdf/0/book_311_455.pdf
  24. .
  25. Kolkur S. Human Skin Detection Using RGB, HSV and YCbCr Color Models. International Conference on Communication and Signal Processing 2016 (ICCASP 2016). Atlantis Press, 2016, pp. 324–332. doi: 10.2991/iccasp-16.2017.51 .
  26. Hu Y., Nan L. Method for Shadow Removal of Moving Object in YUV Color Space. 2nd International Conference on Computer Engineering, Information Science & Application Technology (ICCIA 2017). Atlantis Press, 2016, pp. 662–666. doi: 10.2991/iccia-17.2017.118 .
  27. Yan K. Fringe pattern denoising based on deep learning. Optics Communications, 2019, V. 437, pp. 148–152. doi: 10.1016/j.optcom.2018.12.058.
  28. Boyat A.K., Joshi B.K. Performance Evaluation of Adaptive Shrinkage Functions for Image Denoising. International Conference on Advanced Computing Networking and Informatics, 2019, pp. 547–552. doi: 10.1007/978-981-13-2673-8_58.
  29. Burger W., Burge M.J. Digital image processing: an algorithmic introduction using Java. London: Springer, 2016, 810 p. URL: https://ru.b-ok.cc/book/2096439/95bff5 .
  30. Chen Q., Xu J., Koltun V. Fast image processing with fully-convolutional networks. Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2497–2506. URL: https://arxiv.org/pdf/1709.00643.pdf .
  31. Ramesh K. Digital photoelasticity. Advanced Techniques and Applications. Berlin: Springer, 2000, 424 p. doi: 10.1115/1.1483353.
  32. Baek T.H., Kim M.S., Hong D.P. Fringe analysis for photoelasticity using image processing techniques. International Journal of Software Engineering and its Applications, 2014, V. 8, no 4, pp. 91–102. doi: 10.14257/ijseia.2014.8.4.11 .
  33. Moskalenko S.V. Volnovoi algoritm vektorizatsii lineinykh rastrovykh izobrazhenii . Nauchno-Tehnicheskii Vestnik Informatsionnykh Tekhnologii, Mekhaniki i Optiki , 2008, no. 51, pp. 16–21. Available at: https://cyberleninka.ru/article/n/volnovoy-algoritm-vektorizatsii-lineynyh-rastrovyh-izobrazheniy .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2019 Kosygin A.N., Kosygina L.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies