THEORETICAL AND EXPERIMENTAL INVESTIGATION OF CRACK PROPAGATION DIRECTION. PART II


Cite item

Abstract

The paper is devoted to experimental study of the crack propagation direction angles under mixed mode loading in the plate with the central crack inclined at different angles. Fracture mechanics criteria are discussed and compared. In the present paper the crack propagation direction angles on the basis of three different fracture criteria are found. The maximum tangential stress criterion, the minimum strain energy density criterion and the deformation criterion are used and analysed. The generalized forms of these criteria have been used. It implies that the crack propagation direction angles are obtained with the Williams series expansion in which the higher order terms are kept. The calculations are performed in Waterloo Maple computer algebra software. The analysis of the crack propagation direction angles show that the influence of the higher order terms can’t be ignored. The angles differ considerably when the higher order terms are taken into account.

About the authors

V. S. Dolgikh

Samara National Research University

Author for correspondence.
Email: morenov@ssau.ru
ORCID iD: 0000-0002-1355-4286

postgraduate student of the Department of Mathematical Modelling in Mechanics

A. V. Pulkin

Samara National Research University

Email: morenov@ssau.ru
ORCID iD: 0000-0002-6728-1017

Master’s Degree Student of the Department of Mathematical Modelling in Mechanics

E. A. Mironova

Samara National Research University

Email: morenov@ssau.ru
ORCID iD: 0000-0001-7473-2245

postgraduate student of the Department of Mathematical Modelling in Mechanics

A. A. Peksheva

Samara National Research University

Email: morenov@ssau.ru
ORCID iD: 0000-0003-2748-9232

postgraduate student of the Department of Mathematical Modelling in Mechanics

L. V. Stepanova

Samara National Research University

Email: morenov@ssau.ru
ORCID iD: 0000-0002-6693-3132

Doctor of Physical and Mathematical Sciences, professor of the Department of Mathematical Modelling in Mechanics

References

  1. Floros D., Ekberg A., Larsson F. Evaluation of crack growth direction criteria on mixed-mode fatigue crack growth experiments. International Journal of Fatigue, 2019, 105075. doi: 10.1016/j.ijfatigue.2019.04.013 .
  2. Sajith S., Murthy K.S.R.K., Robi P.S. Experimental and numerical Investigation of mixed mode fatigue crack growth models in aluminium 6061-T6. International Journal of Fatigue, 2020, V. 130, pp. 105285.
  3. Stepanova L.V. Vliyanie vysshikh priblizhenii v asimptoticheskom razlozhenii M. Uil’yamsa polya napryazhenii na opisanie napryazhenno-deformirovannogo sostoyaniya u vershiny treshchiny. Chast’ I . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2019, V. 25, no. 1, pp. 63–79. DOI: http://dx.doi.org/10.18287/2541-7525-2019-25-1-63-79 .
  4. Stepanova L.V. Vliyanie vysshikh priblizhenii v asimptoticheskom razlozhenii M. Uil’yamsa polya napryazhenii na opisanie napryazhenno-deformirovannogo sostoyaniya u vershiny treshchiny. Chast’ II . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2019, V. 25, no. 1, pp. 80–96. DOI: http://dx.doi.org/10.18287/2541-7525-2019-25-1-80-96 .
  5. Malikova L., Vesely V., Seitl S. Crack propagation direction in a mixed mode geometry estimated via multi-parameter fracture criteria. International Journal of Fatigue, 2016, V. 89, pp. 99–107. doi: 10.1016/j.ijfatigue.2016.01.010 .
  6. Hello G. Derivation of complete crack-tip stress expansions from Westergaard-Sanford solutions // International Journal of Solids and Structures. 2018. V. 144–145. P. 265-275. doi: 10.1016/j.ijsolstr.2018.05.012 .
  7. Kachanov M., Shafiro B., Tsurkov I. Handbook of Elasticity Solutions. Dordrecht: Springer-Science+Business Media. 2003. 329 p. doi: 10.1007/978-94-017-0169-3 .
  8. Hello G., Tahar M.B. Roelandt J.-M. Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium // International Journal of Solids and Structures. 2012. V. 49. P. 556–566. doi: 10.1016/j.ijsolstr.2011.10.024.
  9. Stepanova L.V. Asimptoticheskii analiz polya napryazhenii u vershiny treshchiny (uchet vysshikh priblizhenii) . , 2019, № 3, pp. 345–361. doi: 10.15372/SJNM20190307 .
  10. Stepanova L., Roslyakov P. Complete Williams asymptotic expansion of the stress field near the crack tip: Analytical solutions, interference–optic methods and numerical experiments. AIP Conference Proceedings, 2016, V. 1785, 030029. doi: 10.1063/1.4967050 .
  11. Kachanov L.M. Osnovy mekhaniki razrusheniya . М.: Nauka, 1974, 312 p. Available at: https://www.studmed.ru/kachanov-lm-osnovy-mehaniki-razrusheniya_b7befb002cc.html
  12. .
  13. Morozov N.F. Matematicheskie voprosy teorii treshchin . M.: Nauka, 1984. 255 p. Available at: http://en.bookfi.net/book/438624 .
  14. Parton V.Z. Mekhanika razrusheniya: Ot teorii k praktike . М.: Nauka, 1990. 240 p. Available at: http://www.zodchii.ws/books/info-1206.html .
  15. Parton V.Z., Morozov E.M. Mekhanika uprugoplasticheskogo razrusheniya . М.: Nauka, 1985, 504 p. URL: https://ru.b-ok.cc/book/438640/07ed20 .
  16. Anchupov А.В., Slobodyaskij M.G., Anchupov V.P., Rusanov V.A. Eksperimental’naya otsenka dolgovechnosti obraztsov pri standartnykh ispytaniyakh na rastyazhenie . In: Mekhanicheskoe oborudovanie metallurgicheskikh zavodov , 2013, Vol. 2, pp. 27–34 .
  17. Shlyannikov V, Tumanov A. Characterization of crack tip stress fields in test specimens using mode mixity parameters. International Journal of Fracture, 2014, Vol. 185, pp. 49–76. doi: 10.1007/s10704-013-9898-0
  18. .
  19. Matvienko Yu.G. Nesingulyarnye T-apryazheniya v kriteriyakh mekhaniki razrusheniya tel s vyrezami . Vestnik Nizhegorodskogo universiteta imeni N.I. Lobachevskogo , 2011, № 4(5), pp. 12–22. Available at: http://www.unn.ru/pages/issues/vestnik/19931778_2011-4-5_unicode/273.pdf .
  20. Matvienko Yu.G. Modeli i kriterii mekhaniki razrusheniya . М.: Fizmatlit, 2006. 328 p. Available at: http://en.bookfi.net/book/635351 .
  21. Matvienko Y.G. Podkhody mekhaniki razrusheniya v analize deformirovaniya i razrusheniya tel s vyrezami i nadrezami . Problemy mashinostroeniya i nadezhnosti mashin , 2008, № 5, pp. 64–72. Available at: https://elibrary.ru/item.asp?id=11157733 .
  22. Cherepanov G.P. Mekhanika khrupkogo razrusheniya . М.: Nauka, 2012, 640 p. Available at: https://ru.b-ok.cc/book/438682/d295ae .

Copyright (c) 2019 В. С. Долгих, А. В. Пулькин, Е. А. Миронова, А. А. Пекшева, Л. В. Степанова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies