SIMULATION OF FLUCTUATIONS OF AGGRESSIVE ALIEN SPECIES IN CONTINUOUS MODELS WITH INDEPENDENT REGULATION
- Authors: Perevaryukha A.Y.1
-
Affiliations:
- St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences
- Issue: Vol 24, No 4 (2018)
- Pages: 48-58
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/6504
- DOI: https://doi.org/10.18287/2541-7525-2018-24-4-48-58
- ID: 6504
Cite item
Full Text
Abstract
Traditional models in biology do not describe modern extraordinary situations when the whole species composition is mixed. The article deals with oscillatory equations and non-dissipative population dynamics for specific environmental situations that are associated with alien species in ecosystems. During the invasion of new species, the resistance of the biotic environment may be completely absent for a considerable time. Under such conditions, with a high specific fecundity, nonstationary regimes of change in numbers arise. A pest outbreak is realized with an explosive growth phase. All outbreaks of fish and insects are some brief extreme episodes that end with a new state of the environment and the aggressive new species. Completion options are varied even in the example of one malicious species of comb jelly Mnemiopsis leidyi in Azov and Caspian Sea. Transition to relaxation oscillations after a comb jelly outbreak is possible. A new species may become a small group or even disappear in case minN(t; r) = 0. The paper proposes a model based on the lagging regulation for actual scenarios of population behaviour in a new environment. In computational experiments we have shown the conditions for stabilization after an outbreak in an extremely small group of individuals or complete disappearance after collapse. A separate scenario describes the complete depletion of environmental resources during fluctuations with a significant amplitude. The most relevant is the model scenario of stabilization at minimum values after a rapid change in the phases of the outbreak and a transition to the depression of the pest number in the modification of the differential equation of Bazykin and Hutchinson model.
About the authors
A. Yu. Perevaryukha
St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences
Author for correspondence.
Email: morenov@ssau.ru
References
- Perevaryukha A.Yu. Nelineinaya model’ perelova volzhskikh populyatsii na osnove kognitivnogo grafa vzaimodeistviya ekologicheskikh faktorov . Vestnik Samarskogo universiteta. Yestestvennonauchnaya seriya , 2016, no. 1-2, pp. 92–106. Available at: http://journals.ssau.ru/index.php/est/article/view/4269 .
- Perevaryukha A.Y. Grafovaya model’ vzaimodeistviya antropogennykh i bioticheskikh faktorov v produktivnosti Kaspiiskogo morya . Vestnik Samarskogo universiteta. Estestvennonauchnaya seriya , 2015, no. 10, pp. 181–198. Available at: http://journals.ssau.ru/index.php/est/article/view/4460 .
- Panina N.B., Belov A.N. Effektivnost’ entomofagov neparnogo shelkopryada v kompleksnykh ochagakh nasekomykh-fitofagov v dubravakh Privolzhskoi vozvyshennosti . Lesokhozyaistvennaya informatsiya , 2012, no. 1, pp. 26–34. Available at: http://lhi.vniilm.ru/index.php/ru/okhrana-i-zashchita-lesov-str-26-34 .
- Arnold V.I. Geometricheskie metody v teorii obyknovennykh differentsialnykh uravnenii . Izhevsk, 2000. 400 p. .
- Singer D. Stable orbits and bifurcations of the maps on the interval. SIAM journal of applied math, 1978, Vol. 35, pp. 260–268 .
- Farmer J., Ott E., Yorke J. The dimension of chaotic attractors. Physica D., 1983, Vol. 7, pp. 153–170. DOI: https://doi.org/10.1007/978-0-387-21830-4_11 .
- Hutchinson G.E. An Introduction to Population Ecology. Yale University Press.: New Haven, 1978, 125 p. .
- Arino J. An alternative formulation for a Delayed Logistic Equation. Journal of Theoretical Biology, 2006, Vol. 241, pp. 109–119. DOI: https://doi.org/10.1016/j.jtbi.2005.11.007 .
- Bazykin A. Theoretical and mathematical ecology: dangerous boundaries and criteria of approaсh them. Mathematics and Modelling. Ed. by A. Bazykin and Yu. Zarkhin, Nova Sci. Publishers, Inc., 1993, pp. 321–328. Available at: https://elibrary.ru/item.asp?id=21044685 .
- Frolov A.N. The beet webworm Loxostege sticticalis l. (Lepidoptera, Crambidae) in the focus of agricultural entomology objectives: The periodicity of pest outbreaks. Entomological Review, 2015, no. 2. pp. 147–156. DOI: https://doi.org/10.1134/S0013873815020013 .
- Gopalsamy K. Global stability in the Delay-Logistic Equation with discrete delays. Houston J. Math, 1990, Vol. 16, pp. 347–356.
- Arino O., Hbid M.L. Delay Differential Equations and Applications. Springer: Dordrecht, 2006, 581 p. Available at: https://link.springer.com/book/10.1007/1-4020-3647-7 .
- Krebs C.J., Myers J.H. Population Cycles in Small Mammals. Advances in Ecological Research, 1974, Vol. 8, pp. 267–399. doi: 10.1016/S0065-2504(08)60280-9 .
- Baker T.H., Paul A.H. Computing stability regions Runge-Kutta methods for delay differential equations. IMA Journal of Numerical Analysis, 1994, Vol. 14, pp. 47–362. URL: https://arch.neicon.ru/xmlui/bitstream/handle/123456789/3624934/IMAJournalofNumericalAnalysisimanum_14_3_14-3-347.pdf?sequence=1 .
- Perevaryukha A.Yu. Uncertainty of asymptotic dynamics in bioresource management simulation. Journal of Computer and Systems Sciences International, 2011, Vol. 50, no. 3, pp. 491–498. DOI: https://doi.org/10.1134/S1064230711010151 .
- Ruan S. Delay Differential Equations in Single Species Dynamics. Delay Differential Equations and Applications. Springer, Berlin, 2006, pp. 477–517. DOI: https://doi.org/10.1007/1-4020-3647-7_11 .