PARAMETRIZATION OF INVARIANT MANIFOLDS OF SLOW MOTIONS


Cite item

Abstract

The method of integral manifolds is used to study the multidimensional systems of differential equations. This approach allows to solve an important problem of order reduction of differential systems. If a slow invariant manifold cannot be described explicitly then its parametrization is used for the system order reduction. In this case, either a part of the fast variables, or all fast variables, supplemented by a certain number of slow variables, can play a role of the parameters.

About the authors

V. A. Sobolev

Samara National Research University

Author for correspondence.
Email: morenov@ssau.ru

E. A. Shchepakina

Samara National Research University

Email: morenov@ssau.ru

E. A. Tropkina

Samara National Research University

Email: morenov@ssau.ru

References

  1. Sobolev V.A., Shchepakina E.A. Reduktsiya modelei i kriticheskie yavleniya v makrokinetike . M.: Fizmatlit, 2010, 319 p. .
  2. Strygin V.V., Sobolev V.A. Effect of geometric and kinetic parameters and energy dissipation on orientation stability of satellites with double spin. Cosmic Research, 1976, no. 14(3), pp. 331–335. Available at: http://adsabs.harvard.edu/abs/1976CosRe..14..331S .
  3. Kononenko L.I., Sobolev V.A. ( Asimptoticheskie razlozheniya medlennykh integralnykh mnogoobrazii) . Sib. matem. zhurn. , 1994, no. 35(6), pp. 1119–1132. DOI: https://doi.org/10.1007/BF02104713 .
  4. Vasilieva A.B., Butuzov V.F. Asimptoticheskie metody v teorii singulyarnykh vozmushchenii . M.: Vyssh. shk., 1990, 208 p. .
  5. Bogolyubov N.N., Mitropolsky Yu.A. The Method of Integral Manifolds in Nonlinear Mechanics. Contributions to Differential Equations, 1963, no. 2, pp. 123–196.
  6. Sobolev V.A. Decomposition of control systems with singular perturbations. In: Proc. 10th Congr. IFAC. Munich, 1987, Vol. 8, pp. 172–176 .
  7. Shchepakina E., Sobolev V., Mortell M.P. Singular Perturbations. Introduction to System Order Reduction Methods with Applications. In: Lect. Notes in Math., 2014, Vol. 2114. Cham–Berlin–Heidelber–London: Springer. URL: https://www.springer.com/us/book/9783319095691 .
  8. Sobolev V.A., Tropkina E.A. Asimptoticheskie razlozheniya medlennykh invariantnykh mnogoobrazii i reduktsiya modelei khimicheskoi kinetiki . Zh. vych. mat. i mat. fiziki , 2012, no. 52(1), pp. 75–89. DOI: https://doi.org/10.1134/S0965542512010125 .
  9. Tropkina E.A. Iteratsionnyi metod priblizhennogo postroeniya integralnykh mnogoobrazii medlennykh dvizhenii . Vestnik SamGU. Estestvennonauchnaya seriya , 2010, no. 4(78), pp. 78–88. Available at: http://mi.mathnet.ru/vsgu171 .
  10. Tropkina E.A. Parametrizatsiya medlennykh invariantnykh mnogoobrazii v modeli rasprostraneniya malyarii . Vestnik SamGU. Estestvennonauchnaya seriya , 2012, no. 6(97), pp. 66–74 . Available at: http://mi.mathnet.ru/vsgu32 .

Copyright (c) 2019 В. А. Соболев, Е. А. Щепакина, Е. А. Тропкина

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies