ON A PROBLEM WITH NON-LOCAL CONDITIONS FOR THE EQUATIONS OF THE IV ORDER



Cite item

Full Text

Abstract

The article deals with a non-local problem with an integral condition for pseudohyperbolic fourth order equation. The dominant mixed derivative which is presented in the equation allowed to interpret the task as an analogue of the Gurs problem. The conditions for the coefficients of the equation and
the input data were obtained to ensure the existence of a single task’s decision.

About the authors

A. V. Dyuzheva

Samara National Research University

Author for correspondence.
Email: morenov.sv@ssau.ru
Russian Federation

References

  1. Bianchi L. Sulla estensione del metodo di Riemann alle equazioni lineari alle derivate parziali d’ordine superiore. Rend Accad. Lincei. Rend. Cl. Sc. fis., mat. e natur., 1895, Vol. 4, p. 89-99, 133–142 .
  2. Byszewski L. Existence and Uniqueness of Solutions of Nonlocal Problems for Hyperbolic Equation uxt == F(x; t; u; ux). Journal of Applied Mathematics and Stochastic Analysis, 1990, Volume 3, Number 3, pp. 163–168. Available at: https://www.univie.ac.at/EMIS/journals/HOA/JAMSA/Volume3_3/168.pdf. DOI:http://dx.doi.org/10.1155/S1048953390000156 .
  3. Beylin A.B., Pulkina L.S. Zadachi o kolebaniiakh sterzhnia s nelineinym zatukhaniem vtorogo poriadka . Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia , 2015, no. 3(125), pp. 9–20. .
  4. Gabov S.А. (Novye zadachi matematicheskoi teorii voln) . М.: FizMatLit, 1998, pp. 448 .
  5. Gabov S.А., Sveshnikov А.G. Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln . М.: Nauka, 1990, p. 344.
  6. Zhegalov V.I., Mironov A.N. Differentsial’nye uravneniia so starshimi chastnymi proizvodnymi . Kazan: Kazanskoe matem. o-vo, 2001, p. 226 .
  7. Zhegalov V.I., Mironov A.N., Utkina E.A. Uravneniia s dominiruiushchei chastnoi proizvodnoi . Kazan: izd-vo Kazan. un-ta, 2014, p. 385 . Differentsial’nye uravneniia , 2002, Vol. 38, no. 1, pp. 93–97. Available at: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=de&paperid=10533&option_lang=rusmbox
  8. .
  9. Zamyshlyaeva А.А. Nachal’no-konechnaia zadacha dlia neodnorodnogo uravneniia Bussineska — Liava . Vestnik Yuzhno-Ural’skogo Universiteta. Seriya Matematicheskoe Modelirovanie i Programmirovanie, 2011, Vol. 37 (254), Issue 10, pp. 22–29. Available at: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=vyuru&paperid=182&option_lang=rus
  10. .
  11. Korpusov Р.О. Razrushenie v neklassicheskikh volnovykh uravneniiakh . М.: URSS, 2010, p. 237 .
  12. Lyusternik L.А., Sobolev S.L. Elementy funktsional’nogo analiza . М.: FizMatLit, 1965, p. 44 .
  13. Pletner U.D. Fundamental’nye resheniia operatorov tipa Soboleva i nekotorye nachal’no-kraevye zadachi . Zhurnal vychislitel’noi matematiki i matematicheskoi fiziki , 1991, Vol. 31, no. 4, pp. 592–604. Available at: http://www.mathnet.ru/php/archive.phtml?jrnid=zvmmf&option_lang=rus&paperid=2790&wshow=paper
  14. .
  15. Sveshnikov А.G., Bogolyubov А.N., Kravtsov V.V. Lektsii po matematicheskoi fizike: ucheb. posobie . М.: Izd-vo МGU, 1993, p. 313 .
  16. Sobolev S.L. Ob odnoi novoi zadache matematicheskoi fiziki . Izvestiia AN SSSR. Ser.: Matematika , 1954, no. 18(86), pp. 3–50. Available at: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=im&paperid=3488&option_lang=rus .
  17. Steklov V.A. Osnovnye zadachi matematicheskoi fiziki . M.: Nauka, 1983 .
  18. Rayleigh J.W.S. Teoriia zvuka . M.: GITTL, 1955, Vol. 1, pp. 273–274 .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Dyuzheva A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies