CAPILLARY RISE WITH SIZE-DEPENDENT SURFACE TENSION AND CONTACT ANGLE



Cite item

Full Text

Abstract

In this paper we consider the size dependent of surface tension in nanocapillary. Based on the analogueo f the Gibbs-Tolman-Koenig-Buff differential equation it is shown that for sufficiently small values of the capillary radius the Tolman’s equation for the surface tension holds. Taking into account the size dependent of the surface tension and the contact angle the problem of the capillary rise is discussed.

About the authors

A. A. Sokurov

Institute of Applied Mathematics and Automation

Author for correspondence.
Email: morenov.sv@ssau.ru
Russian Federation

References

  1. Ono S., Kondo S. Molekuliarnaia teoriia poverkhnostnogo natiazheniia v zhidkostiakh . M.: IL, 1963, 284 p. .
  2. Rekhviashvili S.Sh., Kishtikova E.V. O razmernoi zavisimosti poverkhnostnogo natiazheniia . ZhTF , 2011, Vol. 81. Issue 1, pp. 148–152 .
  3. Tolman R.C. The effect of droplet size on surface tension. J. Chem. Phys., 1949, Vol. 17, no. 3, pp. 333–337 .
  4. Rekhviashvili S.Sh., Kishtikova E.V. Vliianie razmernoi zavisimosti poverkhnostnogo natiazheniia na dinamiku puzyr’ka v zhidkosti . ZhETF , 2014, Vol. 145, Issue 6, pp. 1116–1120 .
  5. Adamson A. Fizicheskaia khimiia poverkhnostei . M.: Mir, 1979, 568 p. .
  6. Rekhviashvili S.Sh., Kishtikova E.V. Poverkhnostnoe natiazhenie, lineinoe natiazhenie i kraevoi ugol smachivaniia maloi kapli v izotermicheskikh usloviiakh . Fizikokhimiia poverkhnosti i zashchita materialov , 2014, Vol. 50, no. 1, pp. 3–7 .

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Sokurov A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies