CASES OF INTEGRABILITY CORRESPONDING TO THE PENDULUM MOTION IN FOUR-DIMENSIONAL SPACE
- Authors: Shamolin M.V.1
-
Affiliations:
- Institute of Mechanics, Lomonosov Moscow State University
- Issue: Vol 23, No 1 (2017)
- Pages: 41-58
- Section: Articles
- URL: https://journals.ssau.ru/est/article/view/5145
- DOI: https://doi.org/10.18287/2541-7525-2017-23-1-41-58
- ID: 5145
Cite item
Full Text
Abstract
In this article, we systemize some results on the study of the equations of motion of dynamically symmetric fixed four-dimensional rigid bodies–pendulums located in a nonconservative force fields. The form of these equations is taken from the dynamics of real fixed rigid bodies placed in a homogeneous flow of a medium. In parallel, we study the problem of the motion of a free four-dimensional rigid body also located in a similar force fields. Herewith, this free rigid body is influenced by a nonconservative tracing force; under action of this force, either the magnitude of the velocity of some characteristic point of the body remains constant, which means that the system possesses a nonintegrable servo constraint. We also show the nontrivial topological and mechanical analogies.
About the authors
M. V. Shamolin
Institute of Mechanics, Lomonosov Moscow State University
Author for correspondence.
Email: morenov@ssau.ru
Russian Federation
References
- Shamolin M.V. Sluchai integriruemosti, sootvetstvuiushchie dvizheniiu maiatnika na ploskosti . Vestnik SamGU. Estestvennonauchnaia seriia , 2015, no. 10(132), pp. 91–113 .
- Shamolin M.V. Sluchai integriruemosti, sootvetstvuiushchie dvizheniiu maiatnika v trekhmernom prostranstve . Vestnik SamGU. Estestvennonauchnaia seriia , 2016, no. 3–4, pp. 75–97 .
- Shamolin M.V. New integrable cases and families of portraits in the plane and spatial dynamics of a rigid body interacting with a medium. Journal of Mathematical Sciences, 2003, Vol. 114, no. 1, pp. 919–975 .
- Shamolin M.V. Mnogoobrazie sluchaev integriruemosti v dinamike malomernogo i mnogomernogo tverdogo tela v nekonservativnom pole . Itogi nauki i tekhniki. Ser. ”Sovremennaia matematika i ee prilozheniia. Tematicheskie obzory” , Vol. 125, ”Dynamical Systems”, 2013, pp. 5–254 .
- Pokhodnya N.V., Shamolin M.V. Nekotorye usloviia integriruemosti dinamicheskikh sistem v transtsendentnykh funktsiiakh . Vestnik SamGU. Estestvennonauchnaia seriia , 2012, no. 9/1(110), pp. 35–41 .
- Shamolin M.V. Mnogoobrazie tipov fazovykh portretov v dinamike tverdogo tela, vzaimodeistvuiushchego s soprotivliaiushcheisia sredoi . Doklady RAN , 1996, Vol. 349, no. 2, pp. 193–197 .
- Shamolin M.V. Dinamicheskie sistemy s peremennoi dissipatsiei: podkhody, metody, prilozheniia Fund. i prikl. mat. , 2008, Vol. 14, issue 3, pp. 3–237 .
- Arnold V.I., Kozlov V.V., Neyshtadt A.I. Matematicheskie aspekty klassicheskoi i nebesnoi mekhaniki . M.: VINITI, 1985, 304 p. .
- Trofimov V.V. Simplekticheskie struktury na gruppakh avtomorfizmov simmetricheskikh prostranstv . Vestnik Moskovskogo Universiteta. Ser. 1. Matematika. Mekhanika , 1984, no. 6, pp. 31–33 .
- Trofimov V.V., Shamolin M.V. Geometricheskie i dinamicheskie invarianty integriruemykh gamil’tonovykh i dissipativnykh sistem . Fund. i prikl. mat. , 2010, Vol. 16, no. 4, pp. 3–229 .
- Shamolin M.V. Metody analiza dinamicheskikh sistem s peremennoi dissipatsiei v dinamike tverdogo tela . M.: Izd-vo ”Ekzamen”, 2007, 352 p. .
- Shamolin M.V. Classes of variable dissipation systems with nonzero mean in the dynamics of a rigid body. Journal of Mathematical Sciences, 2004, Vol. 122, no. 1, pp. 2841–2915 .
- Shamolin M.V. Nekotorye model’nye zadachi dinamiki tverdogo tela pri vzaimodeistvii ego so sredoi . Prikl. mekhanika , 2007, Vol. 43, no. 10, pp. 49–67 .