Modeling of nanoheterojunction betavoltaic cell on GaN and GaP with Si and 3C-SiC/Si

Cover Page


Cite item

Full Text

Abstract

In this paper, the electrophysical properties and efficiency of energy converters — betavoltaic elements, which contain a GaN and GaP heterojunction on Si and 3C-SiC/Si substrates, are modeled. For conversion into electrical energy, external 63Ni or internal 14C radioactive sources with a test specific activity of 100 mCicm-2 are investigated in the simulation. The system of parameters and characteristics is optimized: diffusion lengths, short-circuit current, open circuit voltage, filling factor, reverse saturation current and efficiency. It was shown in simulation results, that in the device structure with junction depth of 0.1 microns, the good operation of a betavoltaic element is determined, the short-circuit current density is up to 200 nAcm-2, the open circuit voltage is up to 3.7 V, the power density is up to 700 nWcm-2, efficiency up to 25 %. The conversion efficiency reaches its maximum value when using a radioisotope source with an activity density from 25 to 100 mCicm-2. The conversion efficiency with the location of the injector source inside is estimated to be about 30 times higher than with the external location.

About the authors

M. V. Dolgopolov

Samara State Technical University

Author for correspondence.
Email: mikhaildolgopolov68@gmail.com
ORCID iD: 0000-0002-8725-7831

Candidate of Physical and Mathematical Sciences, associate professor, Department of Higher Mathematics

Russian Federation, 244, Molodogvardeyskaya Street, Samara, 443100, Russian Federation

A. S. Chipura

Samara State Technical University

Email: al_five@mail.ru
ORCID iD: 0009-0004-0425-0653

researcher and lecturer of the Department of Higher Mathematics

Russian Federation, 244, Molodogvardeyskaya Street, Samara, 443100, Russian Federation

References

  1. Moseley H.G.J. The Attainment of High Potentials by the Use of Radium. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1913, vol. 88, pp. 471–476. DOI: https://doi.org/10.1098/rspa.1913.0045.
  2. Ehrenberg W., Lang C., West R. The Electron Voltaic Effect. Proceedings of the Physical Society. Section A, 1951, vol. 64, number 4, Article number 424. DOI: https://doi.org/10.1088/0370-1298/64/4/109.
  3. Rappaport P. The Electron-Voltaic Effect in p-n Junctions Induced by Beta-Particle Bombardment. Phys. Rev, 1954, vol. 93, issue 1, Article number 246. DOI: https://doi.org/10.1103/PhysRev.93.246.2.
  4. Spencer M.G., Alam T. High power direct energy conversion by nuclear batteries. Applied Physics Reviews, 2019, vol. 6, Article number 031305. DOI: https://doi.org/10.1063/1.5123163.
  5. Zhou Chunlin, Zhang Jinsong, Wang Xu, Yang Yushu, Xu Pan, Li Peixian, Zhang Lu, Chen Zhiyuan, Feng Huanran, Wu Weiwei. Review—Betavoltaic Cell: The Past, Present, and Future. ECS Journal of Solid State Science and Technology, 2021, vol. 10, number 2, Article number 027005. DOI: https://doi.org/10.1149/2162-8777/abe423.
  6. Naseem M.B., Kim H.S., Lee J., Kim C.H., In S.-I. Betavoltaic Nuclear Battery: A Review of Recent Progress and Challenges as an Alternative Energy Source. The Journal of Physical Chemistry C, 2023, vol. 127, issue 16, pp. 7565–7579. DOI: https://doi.org/10.1021/acs.jpcc.3c00684.
  7. Ho Wan, Chow Yi, Nakamura Shuji, Peretti Jacques, Weisbuch Claude, Speck James. Measurement of minority carrier diffusion length in p-GaN using electron emission spectroscopy (EES). Applied Physics Letters, 2023, vol. 122, Article number 212103. DOI: https://doi.org/10.1063/5.0150029.
  8. Chepurnov V.I., Dolgopolov M.V., Gurskaya A.V., Latukhina N.V. Method for producing a porous layer of a silicon carbide heterostructure on a silicon substrate. Patent for an invention RU 2 653 398 C2, 08.05.2018. Application № 2016129598 dated 19.07.2016. Available at: https://yandex.ru/patents/doc/RU2653398C2_20180508. (In Russ.)
  9. Kuznetsova A., Chepurnov V., Dolgopolov M., Gurskaya A., Kuznetsov O., Mashnin A., Radenko V., Radenko A., Surnin O., Zanin G. Betavoltaic device in por-SiC/Si C-Nuclear Energy Converter. EPJ Web of Conferences, 2017, vol. 158, Article number 06004. DOI: https://doi.org/10.1051/epjconf/201715806004.
  10. Chepurnov V.I., Puzyrnaya G.V., Gurskaya A.V., Dolgopolov M.V., Anisimov N.S. Experimental investigation of semiconductor structures of the power source based on carbon-14. Physics of Wave Processes and Radio Systems, 2019, vol. 22, no. 3, pp. 55–67. DOI: https://doi.org/10.18469/1810-3189.2019.22.3.55-67. EDN: https://www.elibrary.ru/ousjkw. (In Russ.)
  11. Roccaforte F., Giannazzo F., Raineri V. Nanoscale transport properties at silicon carbide interfaces. Journal of Physics D: Applied Physics, 2010, vol. 43, no. 22, Article number 223001. DOI: https://doi.org/10.1088/0022-3727/43/22/223001.
  12. Protasov D.Y., Malin T.V., Tikhonov A.V. et al. Electron scattering in AlGaN/GaN heterostructures with a two-dimensional electron gas. Semiconductors, 2013, vol. 47, pp. 33–44. DOI: https://doi.org/10.1134/S1063782613010181. (In English; original in Russian)
  13. Reyyan Kavak Yuruk, Hayriye Tutunculer. Theoretical Investigation of High-Efficiency GaN-Si Heterojunction Betavoltaic Battery. Canadian Journal of Physics, 2019, vol. 97, issue 9, pp. 1031–1038. DOI: https://doi.org/10.1139/cjp-2018-0579.
  14. Demeter T., Athanassios A. Tsekouras. The electron affinity of gallium nitride (GaN) and digallium nitride (GaNGa): The importance of the basis set superposition error in strongly bound systems. The Journal of Chemical Physics, 2008, vol. 128, Article number 144103. DOI: https://doi.org/10.1063/1.2883997.
  15. Wang Y., Lu J., Zheng R., Li X., Liu Y., Zhang X., Zhang Y., Chen Z. Theoretical study of a high-efficiency GaP–Si heterojunction betavoltaic cell compared with metal–Si Schottky barrier betavoltaic cell. AIP Advances, 2021, vol. 11, Article number 065110. DOI: https://doi.org/10.1063/5.0053917.
  16. Willardson R.K., Weber E.R. SiC Materials and Devices. London, UK: Elsevier Science, 1998, 420 p. Available at: https://books.google.ru/books?id=bYms_kigMX8C&hl=en&redir_esc=y.
  17. Lin Z. Simulation and Optimization Design of SiC-Based PN Betavoltaic Microbattery Using Tritium Source. Crystals, 2020, vol. 10, issue 2, Article number 105. DOI: https://doi.org/10.3390/cryst10020105.
  18. Bouzid F., Pezzimenti F., Dehimi L. Modelling and performance analysis of a GaN-based n/p junction betavoltaic cell. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2020, vol. 969, Article number 164103. DOI: https://doi.org/10.1016/j.nima.2020.164103.
  19. Dolgopolov M.V., Elisov M.V., Rajapov S.A., Chipura A.S. Scaling Models of Electrical Properties of Photo and Beta-Converters with Nano-Heterojunctions. Computational Nanotechnology, 2023, vol. 10, issue 1, pp. 138–146. DOI: https://doi.org/10.33693/2313-223X-2023-10-1-138-146. EDN: https://www.elibrary.ru/wkekac. (In Russ.)
  20. Chepurnov V.I., Rajapov S.A., Dolgopolov M.V., Puzyrnaya G.V., Gurskaya A.V. Efficiency determination problems for SiC*/Si microstructures and contact formation. Computational Nanotechnology, 2021, vol. 8, no. 3, pp. 59–68. DOI: https://doi.org/10.33693/2313-223X-2021-8-3-59-68. EDN: https://www.elibrary.ru/eybfqt. (In Russ.)
  21. Gurskaya A.V., Dolgopolov M.V., Chepurnov V.I. [et al.]. Contacts for SiC Nano-Microwatt Energy Converters // Vestnik Moskovskogo Universiteta Seriya 3 Fizika Astronomiya, 2023, vol. 78, issue 1, article number 2310103. DOI: https://doi.org/10.3103/S0027134923010149.
  22. Rahmani F., Khosravinia H. Optimization of silicon parameters as a betavoltaic battery: Comparison of Si p-n and Ni/Si schottky barrier // Radiation Physics and Chemistry. 2016. № 125. Pp. 205–212. DOI: https://doi.org/10.1016/j.radphyschem.2016.04.012.
  23. Dolgopolov V.V., Chepurnov V.I., Chipura A.S. [et al.]. Scaling and activation of nanoheterojunctions on silicon and silicon carbide substrates // In Proceedings of the International Conference “Fundamental and Applied Problems of Modern Physics”. 2023. Section II. P. 88–92. https://elibrary.ru/item.asp?id=54922680.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Dolgopolov M.V., Chipura A.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies