Equivariant properties of the space ℤ (X) for a stratifiable space X

Cover Page


Cite item

Full Text

Abstract

In this paper, we prove the action of the compact group G defined by the stratified space X is continuous to the space Z(X) being a stratified space containing the self-stratified space X as a closed subset. An equivariant analogue of some results of R. Cauty concerning A(N)R(S) – spaces is proved. It is presented that the orbit space  Z(X)/G by the action of the group G is a S space.

 

Full Text

Introduction

In the category of stratifiable spaces and continuous images, we include one construction belonging to the test space [1; 2] that defines the covariant functor in this category. This construction defines the functor that allows each stratified space X to be immersed in a closed manner into some other space Z(X), which is the stratified space with "good"   functorial, geometric and topological properties.

A stratifiable spaces can be defined of as topological space that is divided into smooth manifolds. Then a stratification in this context [3] is a structure associated with the emergence of closed sets, which is locally a decomposed space. This is what [4] refer to as a “germinal stratification". Each decomposed space causes a bundle of germs-stratifications, hence the concepts are consistent. Another notion of stratification can be found in [4], where the boundary conditions are slightly different. Stratifiable spaces always admit tangent bundle. They are relevant because they are really singular, while the usual vector bundle is not [5]. Families of examples and applications [6; 7] arise from smooth equivariant vector bundles. The next main motivation for developing stratifiable vector bundles is to use them for quantization purposes. In particular, in the Kostant–Suriot–Weyl quantization picture, three components of the initial data are required: a symplectic manifold, a complex linear bundle with a connection, and polarization, all of which satisfy various compatibility conditions [8]. Therefore, it is relevant to consider and define theorems for equivariant properties of spaces over a stratifiable space.

Let X be a stratified (briefly, S - space) space. For each open subset U - of the space X and any point x U of the set U we put:

  1.  n(U, x) = min{m : x ∈ Um}, where U=k=1Uk
  2.  Ux=Un(U,  x)\X\{x}¯n(U,x)

Obviously, the set Ux is an open neighborhood of the point x and Ux U. The set Ux has the following properties:

1°. Ux is an open neighborhood of the point x;

2°. If  UxVy ≠ ∅ and n(U, x) ≤ n(V, y) then yU.

3°. If UxVy ≠ ∅ then xV or y U.

Let X be the topological space, |F(X)| be a complete simplicial complex whose vertices are points in the space X, i.e. |F(X)⁰| = X. The space |F(X)|  has a weak topology. Now we define the topology on the space |F(X)|, the bases of open sets of which we denote by Z(X) consists of W open in F(X), satisfies following conditions:

o1. W X is an open in X;
o2. |F (W X)| ⊂ W;
i. e. τZ(X) = {W ∈ τ|F(X)| : W satisfies the conditions o1-o2}.

Condition o2 means that every simplex σ F(X), is contained in W if all vertices of this simplex σ lie entirely in W X.

1  Main results

For the subset A X, the set F(A) is a subcomplex of the full complex  F(X) and Z(A)  is a subspace of the space Z(X). Obviously, Z(A) is closed in Z(A) if A is closed in X.

For each n = N ∪{0} we put Zn (X) = |F (X)n| Zn (X) is a subspace of Z(X). Then Z0 (X) ≅ X  and  ZXn=0 ZnX.

It is easy to see that for any nZ the subspace Zn (Xis closed in Z(X).

Let us introduce the following notation:

T(A) = {σ ∈ F(X)\F(A) : σ ∩ A ≠ ∅};
M(A) = {x ∈ Z(X) : exists σ ∈ F(A) such that x(σ^) > 0};
Tn(A) = T (A) ∩ (F(X)n \ F(X)n−1);
Mn(A) = Z (A) (M (A) ∩ Zn(X);

For each ε ∈ (0,1)T(A) and for each nN, define the set:

M (A, ε) = ∪n∈+Mn(A, ε), 

where M0 (A, ε) = Z (A) = |F (A)| and Mn (A, ε) = Z (A) ∪ {σ(ε(σ)) ∩ πσ-1(Mn−1(A, ε)) : σ ∈ Tn(A)}.

Then thee quality M(A,ε) ∩ X = A holds.

For each open set U of the space X, the set M (U, ε) is open in Z(X).

In this case, the family B(M) = {(U, ε) : U is open in ε ϵ (0,1)(U)} is an open base of the space Z(X).

Therefore, if for every nN and every ε ∈ (0, 1)T(A) ∪T(A)∪...∪Tn(A) the set Mn(A, ε) is defined, thenthe family

B(M) = {M1, (U, ε)} : U is open in X and ε ∈ (0, 1)T(U)} is an open base for Z1(X), i.e. the following holds.

In the work [2] R. Cauty claimed that for the space Z(X) the following are true:

Lemma [9]. Families{M (U, ε) : U  is open in X and  and ε ∈ (0,1)T(U)} and {M1 (U, ε) : U  is open the base in X  of the space and ε ∈ (0,1)T(U)} is the base of the space Z(X), (respectively, the space Z1(X)).

In the work [2] R. Cauty claimed that for the space Z(X) the following are true:

  1. Each continuous map f : A Y, where A is a closed subset of the stratified space X, has a continuous extension to all X with values in Z(X): that is, the following diagram holds  , 

          AfY  

         X Z(Y)f¯  

        f |~A=f.X, YS.   

  2. The stratifiable space is AR(S)  (ANR(S))  if and only if X is a retract (respectively, a neighborhood retract) of the space Z(X).

Definition [6]. A topological space L is called hyper-connected (respectively, m -hyper-connected) if for each  N, there is a mapping hi : Li × σi-1 L satisfying a, b and c (respectively, a, b and d):

  1. tσn-1and ti = 0 implies hn (x, t) = hn-1 (δi · x, δi · t) for each x Ln and n = 2, 3, . . .
  2. For each x Ln the mapping t → L(x, tmaps the sets σn-1 to L continuously;
  3. For each  ∈ L and a neighborhood  U of x, there is a neighborhood  V of x such that i=1nhi(Vi × σi-1) U and VU ;
  4. For each  ∈ and a neighborhood  of the point x, there is a neighborhood V of the point x such that   i=1nhi(Vi × σi-1⊂ U  and V ⊂ U,   where σn1={tRni=1nti=ti0} - (n-1) is  a dimensional simplex    a  δAn → An-1      mapping defined by the formula      δi(a1a2, . . . an ) = ( a1, a2, . . . , ai−1, ai+1, . . . , an) i1,n¯, i.e.     δi – ”forgetting” i - th coordinate of the product.

A space L is said to be a locally hyper - connected if for each point x  L, there exists a neighborhood V of the point x such that V is hyper-connected.

In the paper [2] R. Cauty proved that X A(N)R(S) if and only if X is hyperconnected (respectively, locally hyperconnected).

Theorem 1. For an arbitrary S - space X, the space Z(X)\X  is a AR(S) space.

Proof. Let n ∈ N. We construct mapping hn(z1, . . . , zn,t) : (ZX\X)n × σn−1ZX\X   

assuming hn(z1, z2,. . . . , zn)(t1, t2, . . . , tn) = inziti,

where (z1z2,. . . . , zn∈ (ZX\X)n(t1t2, . . . , tn) ∈  σn−1i=1nti= 1, ti ≥ 0.

It is easy to show that hn((z1, . . . , zn) × t) ∈ Z(X)\X.

Now we show that the space Z(X)\X is hyperconnected.

  1. Let  t σn−1, t = (t1, t2, . . . , ti−1, 0, ti+1, ti+2, . . . , tn). Then hn(z, t) =

     = hn((z1, z2, . . . , zn)(t1, t2, . . . , ti−1, 0, ti+1, ti+2, . . . , tn)  =  (t1z1+ t2z2+. . .+ti−1zi−1+ ti+1zi+1+ . . . tnzn) = 

    = hn−1((z1, z2, . . . , zi−1, zi, zi+1, . . . , zn)(t1, t2, . . . , tn)) = hn−1(δiz, δit).

  2. We fix z∈ (Z(X)\X)n ,z0 = (z10,z20,,zn0), z10ZX\X

    Hence z10=k=1limki,  xkl¯,  i=1limki=1,  mki0.  Let tσn−1, then  thn(z0,t)=i=1ntizi0 ==t1k=1l1μkxk1¯+t2k=1l2μkxk2¯++tnk=1lnμkxkn¯;   

    Let us put tiμj = aij, ti ≥ 0, µj ≥ 0, aij ≥ 0, i = 1, nj = l1, . . . , ln, ∑ij aij = 1. 

     Hence, we get i=1nj=1liaijxji¯. Consider the set X0 = {xi: i, j}..     In this case, point h(z0, t) Z(X0), i.e. there is a simplex σ lying in Z(X0) whose vertices consist of points of the set X0.  On the other hand, if we consider the simplex σn−1 with vertices z10,,zn0, i.e. σ0n1=z10,z20,,zn0. The mapping hn(z, t) with continuity in the argument t or the mapping thn(z, t) completely covers the simplex , i.e. the mapping t → hn(z, t) as a homeomorphism maps σn−1 to z₀n−1 to . Hence, the mapping t → hn(z, t) is continuous.
  3. Let z₀  Z(X)\X and Uzbe an arbitrary neighborhood of the point z in Z(X)\X. Consider suppz = {x1, x2, . . . , xk}   the support  of  the point z of the space Z(X)\X. Then z₀ ∈ ⟨x1x2, . . . , xk⟩ = σ.       By the definition of topology in the space Z(X)\X , the set V1σUz0 is open.  Consider a set V of the form {zσUz0=V1: segment [z,z0]=V1}. Obviously, the set V is open and convex. By definition, the following takes place: V V Vz. Note that if z ∈ (Z(X)\X)n, z = (z1, z2, . . . , zn) and suppziAAX, then supp hn(z, t) ⊆ A.   If V is convex, then the maps hn(z, t) by definition maps Vn × σn−1 to V.  Therefore, the following holds: n=1hn(Vn×σn1)U.    Hence, the space Z(X)\X is hyperslash. By virtue of R. Cauty’s theorem [1], we obtain that Z(X)\X is AR(S).  Theorem 1 is proved.

Theorem 2. The finite product of Z(N)R(S) spaces is Z(N)R(S) spaces. Theorem 2 is proved in [6].

Let X be a topological space, G is a topological group θ : G × XX  is a continuous mapping such that

(1)  θ(g, θ(h, x)) = θ(gh, x) for all hG and xX ;
(2)  θ(e, x) = x for all xX, where e is the unit of the group G.

The mapping θ is called the action of the group G on the space X.

The space X with a fixed action θ of the group G is called a G - space.

A set A is called invariant under the action of the group G (or G - invariant) if G(A) = A,  where G(A) = {g(x) : gG, xA}.

For g ∈ G, we define the mapping θg→ by the formula θg(x) = g(x) = θ(g, x). By virtue of (1) or (2) we have θgθh = θgh and θe and  is the identity mapping 1X of the space X into itself.

Thus, θgθg-1 = θe1θg-· θtherefore, for gG, the mapping θg  is a homeomorphism of the space X onto itself.

An action θ is called effective if  Kerθ = e(i.e., the mapping θ is injective), where Kerθ = {g ∈ G : g(x) = x} for any  the kernel of the action of θ, and is almost effective if Kerθ – is a discrete subgroup of the group G. Obviously, the kernel Kerθ is a normal divisor of the group G and is closed in G.

We note, that some of the supporting statements were considered in the articles [10–14].

Definition [15]. Let X and Y be G - spaces.

The mapping φ : XY is called an equivariant mapping (or -mapping) if φ commutes by actions, 

i.e. φ(g(x)) = g(φ(x)) for all g ∈ and all x X.

For a fixed group G, the class of G- spaces is a class of objects of a certain category, whose morphisms are called equivariant maps.

An equivariant mapping φ : XY that is a homeomorphism is called the G -equivalence of G -spaces.

Note that if we denote by Homeo(X) the group (with respect to, composition) of all homomorphisms of the space X onto itself.

The mapping gθg defines a homeomorphism θ : G → Homeo(X).

Let X be some G space, and let x X. The set Gx = {gG : g(x) = x} of elements of the group, for which x is a fixed point, is obviously a closed subgroup of the group G. This subgroup Gx is called the stationary subgroup (or the stabilizer of the point x).

On the other hand, note that kerθ is exactly xXGx, i.e. kerθ = xXGx.

The action of the group G on the space X is called free if for any point  X the subgroup Gx is trivial. An action is called semi-free if the stationary subgroup Gx of any point  X is either trivial or is the whole of G.

Take  X. The subspace Gx = {g(x) : ∈ G} is called the orbit of the point x (with respect to the action of the group G). Note that G(x)for any  X and for points x and y the sets G(x) and G(y) either do not intersect each other or coincide, i.e. G(x)G(y) = Ø or G(x)G(yfor any x,  X. By X \G ={G(x) :  X} we denote the orbit set of G - space X.

Let  π = πX : XX/G be a natural mapping, associating the point x and the orbit x* = G(x).

Then X\G is endowed with the quotient topology in the usual way (i.e., the set U ⊂ X\is open if π−1(U) and only if  is open in X ), and the resulting topological space is called the orbit space.

Note that if U ⊂ X is open, then the set  G(U) = is open, since each of the sets g(U)θg(U)(recall that θg : X → X is a homeomorphism).

Therefore, for an open U ⊂ X, the set π−1(U)G(U) is also open, which by definition means that the set π(U) is open in X\G. Hence the projection  is a continuous open map.

Theorem [15]. Let the group G be compact and X is some G - space. Then 

(1) the space X\G is Hausdorff;
(2) The projection π X → X/G is a closed map;
(3) The projection π X → X/G is a proper mapping (that is, the preimage of any compact set is compact);
(4) The compactness of the space X is equivalent to the compactness of the space X\G;
(5) The local compactness of the space X is equivalent to the local compactness of the space X\G.

Let X be a stratified  G - space that is the topological group G acts on the space X,    i.e.   there is a continuous mapping (G, X) : G × XX defined by the formula: (g, x) = gx.

On the test space Z(X), the action of the group  is defined as follows:  (G, Z(X)) : G × Z(X) → Z(X), gG, zZ(X), zi=1kmixi¯ , i=1kmi = 1, mi ≥ 0 (g, z) = g · z = i=1kmigxi¯. Thus, the space Z(X) is a G - space.

It is easy to see that the space X  in the G space Z(X) is an invariant G -subset, i. e. if x X, then g(x) = x ∈ X.

Thus, the following holds.

Theorem 3. A continuous action of the group G defined on the space X extends continuously to the entire space Z(X).

Take the point zi=1kmixi¯mi ≥ 0, i=1kmi = 1, then

Gz={gz : gG, gz = gi=1kmixi¯ = i=1kmigxi¯}.

Obviously, Gz=Gm1x1¯++mkxk¯={m1gx1¯++mkgxk¯ : gG}.

Note that Z(X/G) ≅ Z(X)/G and is invariant in Z(X/G).

     XπG(x)X / G                          xGx     i                                      iZ(X)πGzZ(X)G/          zGz

In his paper [9] Cauty proved the following

Lemma 1.2 [1]. Let X be a topological stratified space. If YS and  Y - is closed and f : A → X  is continuous, then the mapping f~ has a continuous extension f~ : YZ(X).

Lemma 1. Let X be a topological stratified G - space,  Y a closed G  invariant subset, : A → X an equivariant continuous mapping, when the mapping  f has a continuous equivariant extension  f~ : Y → Z(X)..

Proof. Let A be a closed subset of the space X. We put  W = X\A. W′ = {xW : xUy, yA and U is open in X} and m(x) = max{n(U, y) : yA and xUy}.

Obviously, W′W and for every xW′  and for every  there is m(x) < n(W,x) < ∞.

Let W = Y\AW′ = {x ∈ W x ∈ Uyy ∈ and  is open in X}.

Consider the open covered W* {Wxx ∈ subspace W.

Since the subspace W is paracompact, there exists a locally finite G - cover V inscribed in W*.

For any vV, we fix a point (vertex) xv ∈ W such that gxv = xgv, where g G.

If a point xv ∈ W' we fix such a point (vertex) av ∈ A and an open set Sv, avSv such that  xv(S)avand n(Sv , av ) = m(xv), and gav = agv.

If xv¯W' we put av fixed a0 ∈ A. Let {Pv : V} be partition of unity subordinate to V and Pv(x) = Pgv(gx).

The required continuation F : Y  → Z(X) is defined as follows:

F(x) =f(x);if  xAPv(x)fav,ifxW

  1. Now we show that the mapping F : Y  → Z(Xis equivariant, i.e. gF(x) = F(gx), where gG.
    1)  If the point x ∈ A, due to the invariance of the set, we have, gF(x) = gf(x) = f(gx) = F(gx)
    2)  Let the point x  W then we have gF(x)g(Pv(x) · f(av)) = ∑(Pv(x) · gf(av) = ∑Pv(x) · gf(av) = ∑Pv(x) f(agv).   gF(x) = ∑Pgvg(x) · f(agv) = Pv(x) f(agv).  
    Hence, gF(x) = F(gx) i.e. the mapping F is equivariant.
  2. Due to the - invariance of the closed set and the simpliciality of a certain mapping F : YZ(X), the mapping F(xis continuous. 

 Lemma 1 is proved.

By Lemma 1 and Theorem 1, we have

Theorem 4. The space XG  A(N)R(S if and only if there is a G - retraction r (neighborhood)  G - space Z(X)  on the G - space X.

Lemma 2. Let XA(N)R(S.

Then there is a G -  retraction Rn : O(Xn) → Xsuch that  Sn 

and n ∈ N such that O(Xn) is a neighborhood Xn to Z(Xn) .

Proof. Let X be ANR(S) - space. It follows from the results of R.

Cauty that there is a retraction  r : → X, where U is a neighborhood of the space X in Z(X).

We put V = (rn)−1(Un), where V ⊂ (Z(X))n, rn : UnXn, Un ⊂ (Z(X))n.

Now we define the mapping φ : Z(Xn) → (Z(X))n  as follows: z ∈ Z(Xn), z = i=1kmixi¯,

xix1i,x2i,,xni. We put  φ(z) = mix1i¯mix2i¯,,mixni¯. Obviously, φ(z) ∈ (Z(X))n. It is easy to check that the mapping φ : Z(Xn) → (Z(X))n is continuous. We put  Rn = rnφ and φ−1(V ) = O( Z(Xn)).

Hence Rn : Z(Xn) φ : Zn. Now we show that Rn is an equivariant mapping, i.e. the equality Rn(gz) = gRn(z) holds.

Rn(gz) = rn(φ(gz)) = rn(φ(∑migxi¯)) = rn(φ(∑mig(x1i . . . , xni ))) =

= rn(φ(∑mig(x(1)i . . . , xg(n)i ) ))rn((∑mixg(j)i¯))rn((∑mi xji¯)) = g(rn ∑mi xji¯) = gRn(z).

Hence, the mapping Rn is equivariant. It is easy to check that Rn is a continuous retraction.

Lemma 2 is proved.

 

Рис. Иллюстрации к теоремам: az0(x) — x; b — z1(x) — отрезки, вершины — точки X (одномерные симплексы); cz2(x) — треугольники, вершины — точки X (двумерные симплексы; dz3(x) — тетраэдры, вершины — точки X (трехмерные симплексы)

Иллюстрации к теоремам: az0(x) — x; b z1(x) — отрезки, вершины — точки X (одномерные симплексы); cz2(x) — треугольники, вершины — точки X (двумерные симплексы; dz3(x) — тетраэдры, вершины — точки X (трехмерные симплексы)

 

Theorem 5. Let X A(N)R(S). Then Xn GA(N)R(S), where GSn –  is a subgroup of the group of all permutations.

Proof. Let  A(N)R(S) and  be a stratified G − space, A its closed invariant G − subset, f : A → Xn  is an arbitrary continuous G − mapping. Let O = φ−1(O(Z(Xn))). 

We put Fg = Frn, rn = Rnn the Cartesian product of retraction  defined by Lemma 2, F : Y Z(Xn) mapping defined in Lemma 1.

Then the mapping Fg is a G extension, since Fg is the composition of two G mappings F and rU. Obviously, Fg is an extension of the mapping f.The theorem is proved.

This theorem implies

Corollary 1. If X is a G - space and  X A(N)R(S) then X G − A(N)R(S).

By virtue of Lemma 1, we can also assert.

Corollary 2. Let X be a topological stratifiable G - space. If Y is a stratified G - space A is an invariant G - space, f : AX\G. LXet|GX is an equivariant mapping. Then  f  has an equivariant continuous extension F : Y ZX\G.

Corollary 1 implies.

Corollary 3. If XGA(N)R(S), then X/GGA(N)R(S).

Definition [13]. The set AX  is called homotopically dense in X if there exists a homotopy h(x,t) : X ×D[0, 1]→X  such that h(x,0) = idX  and h (X × (0,1]) A.

Theorem 6. For any stratified space X and for any nN+ subspace Z(X)\Zn(X)  is homotopically dense in Z(X).

Proof. Let X is the stratified space and n ∈ N+.

Fixing the point z0Z(X)\Zn(X), where

z0 ∈ <  ̅x1, ̅x2,..., ̅xn+1  and

z0 =m10x¯1+m20x¯2+...+mn+10x¯n+1,

thus suppz0 = { ̅x1, ̅x2,..., ̅xn+1}.

We will construct the homotopy h(x,t) : Z(X) ×[0, 1] → ZX, assuming h(z, t) = tz0 + (1 − t)z.

By virtue of the convexity of the space Z(X) for any zZ(X) and t ∈ [0, 1] the point h(µ, t) belongs to Z(X), that is h(µ, t) ∈ Z(X), z ∈ Z and t ∈ [0, 1].

If t = 0, then h(µ,0), that is h(µ,0) = idZ(X).

If t > 0 and t ≤ 1, then h(µ, t) = tz0 + (1 − t)z belongs to Z(X)\Zn(X) because the carriers supph(µ, t of point h(µ, t consist of at least n + 1 points, that is

h(µ, t) = tz0 + (1 − t)z =

t(m10x¯1+m20x¯2+...+mn+10x¯n+1)+(1t)(m10x'¯1+m20x'¯2+...+mk0x'¯k)Z(X)\Zn(X),

the point h(µ, t) carrier consists of points z and z0 carriers, and it consists of different (n+1) points.

So the point h(z, (0,1]) Zn(X) and h(z, (0,1]) ⊂  Z(X)\Zn(X), which was required to be proved.

The theorem isproved.

Conclusion

In this paper we consider that the functor Z is open, normal and monadic in the category of stratified spaces and continuous maps to itself. The dimensional properties of the space Z(X) for the stratified space X are also studied, the subfunctor of the functor Z with the corresponding nested dimension is determined for each n.

Information about the conflict of interests: authors and reviewers declare no conflict of interests.

Информация о конфликте интересов: авторы и рецензенты заявляют об отсутствии конфликта 

×

About the authors

Tursunboy F. Zhuraev

Tashkent State Pedagogical University named after Nizami

Author for correspondence.
Email: tursunzhuraev@mail.ru
ORCID iD: 0009-0005-5379-3862

Doctor of Physical and Mathematical Sciences, associate professor of the Department of Mathematics

Uzbekistan, 27, Bunyodkor Street, Tashkent, 700100

Mikhail V. Dolgopolov

Samara State Technical University

Email: mikhaildolgopolov68@gmail.com
ORCID iD: 0000-0002-8725-7831

associate professor, Candidate of Physical and Mathematical Sciences, Department of Higher Mathematics

Russian Federation, 244, Molodogvardeyskaya Street, Samara, 443100

References

  1. Borges C.R. On stratifiable spaces // Pacific Journal on Mathematics. 1966. Vol. 17, No. 1. Pp. 1–16. DOI: https://doi.org/10.2140/PJM.1966.17.1.
  2. Cauty R. Retractions dans les espaces stratifiables. // Bulletin de la Societe Mathematique de France. 1972. Vol. 102. Pp. 129–149. DOI: https://doi.org/10.24033/bsmf.1774.
  3. Pflaum Markus J. Analytic and geometric study of stratified spaces. Contributions to Analytic and Geometric Aspects. Part of the book series: Lecture Notes in Mathematics. Berlin: Springer-Verlag, 2001. Vol. 1768. DOI: https://doi.org/10.1007/3-540-45436-5.
  4. Crainic M., Mestre Jo o Nuno. Orbispaces as differentiable stratified spaces // Letters in Mathematical Physics. 2018. Vol. 108. Pp. 805–859. DOI: https://doi.org/10.1007/s11005-017-1011-6.
  5. Ethan Ross. Stratified Vector Bundles: Examples and Constructions. 2023. DOI: http://dx.doi.org/10.48550/arXiv.2303.04200.
  6. Borges C.R. A study of absolute extensor spaces // Pacific Journal on Mathematics. 1969. Vol. 31. Issue 2. Pp. 609–617. DOI: https://doi.org/10.2140/PJM.1969.31.609.
  7. Borsuk K. The theory of retracts. Warsawa: [Pan?stwowe Wydawn. Naukowe], 1971. 251 p. Available at: https://archive.org/details/theoryofretracts0000bors.
  8. Hall Brian C. Quantum Theory for Mathematicians. Part of the book series: Graduate Texts in Mathematics. Vol. 267. New York: Springer. 2013. DOI: https://doi.org/10.1007/978-1-4614-7116-5.
  9. Cauty R., Guo Bao-Lin, Sakai K. The huperspaces of finite subsets of stratifiable spaces // Fundamenta Mathematicae. 1995. Vol. 147. Issue 1. Pp. 1–9. DOI: http://dx.doi.org/10.4064/fm_1995_147_1_1_1_9.
  10. Zhuraev T.F. Equivariant analogs of some geometric and topological properties on stratified spaces // West. Kirg. Nat. University Named after Bolasagyn Zhasup. 2014. No. 1. P. 23–27.
  11. Александров П.С., Пасынков Б.А. Введение в теорию размерности. Москва: Наука, 1973, 575 с. URL: https://djvu.online/file/jSWvCi71nbeFs.
  12. Жураев Т.Ф. Некоторые геометрические свойства функтора вероятностных мер и его субфункторов: дис. ... канд. физ.-мат. наук. Москва: Московский государственный университет, 1989. 90 с.
  13. Banakh T., Radul T., Zarichniy M. Absorbing sets in infinite–dimensional manifolds. Львов: VNTL Publishers, 1996. Т. 1. 232 с.
  14. Жураев Т.Ф. Размерность паракомпактных -пространств и функторы конечной степени // ДАН Узбекистана. 1992. № 4. С. 15–18.
  15. Бредон Г. Введение в теорию компактных групп преобразований. Москва: Наука, 1980. URL: https://libcats.org/book/508918.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. Illustrations to theorems: a — z0(x) – x; b — z1(x) — segments, vertices — point X (one-dimensional simplices); c — z2(x) — triangles, vertices — points X (two-dimensional simplices; d — z3(x) — tetrahedra, vertices – points X (three-dimensional simplices)

Download (190KB)

Copyright (c) 2023 Zhuraev T.F., Dolgopolov M.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies