General theory of orthotropic shells. Part II

Cover Page


Cite item

Full Text

Abstract

Modern mechanical engineering sets the tasks of calculating thin-walled structures that simultaneously combine sometimes mutually exclusive properties: lightness and economy on the one hand and high strength and reliability on the other. In this regard, the use of orthotropic materials and plastics seems quite justified.

The article demonstrates the complex representation method of the equations of orthotropic shells general theory, which allowed in a complex form to significantly reduce the number of unknowns and the order of the system of diferential equations. A feature of the proposed technique for orthotropic shells is the appearance of complex conjugate unknown functions. Despite this, the proposed technique allows for a more compact representation of the equations, and in some cases it is even possible to calculate a complex conjugate function. In the case of axisymmetric deformation, this function vanishes, and in other cases the influence of the complex conjugate function can be neglected.

Verification of the correctness of the proposed technique was demonstrated on a shallow orthotropic spherical shell of rotation under the action of a distributed load. In the limiting case, results were obtained for an isotropic shell as well. 

Full Text

1. Предварительные сведения

Комплексное представление уравнений общей теории изотропных оболочек впервые было сделано В.В. Новожиловым в [1]. Представление уравнений в комплексной форме позволило существенно упростить решение задачи: сократить вдвое число неизвестных и порядок системы дифференциальных уравнений. Попытка построения аналогичного комплексного представления исходных дифференциальных уравнений ортотропных оболочек натолкнулась на следующую трудность: появление комплексно-сопряженных неизвестных функций, что не позволило сократить число и порядок исходной системы дифференциальных уравнений. Несмотря на указанную трудность, эта запись позволяет более компактно представить уравнения, а в некоторых случаях имеется возможность вычислить комплексно-сопряженную функцию. В случае осесимметричной деформации эта функция обращается в нуль, а в других случаях влиянием комплексно-сопряженной функции можно пренебречь.

2. Постановка задачи

Рассмотрим кратко (более подробно приведено в первой части статьи) комплексное преобразование исходных уравнений общей теории ортотропных оболочек (более общее преобразование сделано Артюхиным Ю.П. для многослойной оболочки, составленной из произвольного числа ортотропных слоев [2], а также в [3]). Пусть тонкая ортотропная оболочка постоянной толщины испытывает упругие деформации, малые углы поворота и прогибы. Оси ортотропии параллельны координатным линиям кривизны α 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqySde2aaSbaaSqaaiaaigdaaeqaaaaa@3A89@ , α 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqySde2aaSbaaSqaaiaaikdaaeqaaaaa@3A8A@ . Считаем справедливыми гипотезы Кирхгофа MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ Лява. Положительными направлениями для тангенциальных усилий (растяжения/сжатия и сдвига) T j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamivamaaBaaaleaacaWGQbaabeaaaaa@39F7@ , S MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4uaaaa@38DB@ и моментов (изгибающих и крутящего) M j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamytamaaBaaaleaacaWGQbaabeaaaaa@39F0@ , H MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamisaaaa@38D0@ считаются направления, принятые в монографии [1].

Из преобразованных уравнений равновесия и совместности деформаций следует аналогия [1]:

T 1 κ 2 ; T 2 κ 1 ;Sτ; M 1 ε 2 ; M 2 ε 1 ;H ω 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabiqaaaqaaiaadsfadaWgaaWcbaGaaGymaaqa baGccqGHugYQcqaH6oWAdaWgaaWcbaGaaGOmaaqabaGccaaI7aGaaG zbVlaadsfadaWgaaWcbaGaaGOmaaqabaGccqGHugYQcqaH6oWAdaWg aaWcbaGaaGymaaqabaGccaaI7aGaaGzbVlaadofacqGHugYQcqGHsi slcqaHepaDcaaI7aaabaGaamytamaaBaaaleaacaaIXaaabeaakiab gsziRkabgkHiTiabew7aLnaaBaaaleaacaaIYaaabeaakiaaiUdaca aMf8UaamytamaaBaaaleaacaaIYaaabeaakiabgsziRkabgkHiTiab ew7aLnaaBaaaleaacaaIXaaabeaakiaaiUdacaaMf8Uaamisaiabgs ziRoaalaaabaGaeqyYdChabaGaaGOmaaaacaaISaaaaaaa@68BD@

где ε j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyTdu2aaSbaaSqaaiaadQgaaeqaaaaa@3AC5@ , ω MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyYdChaaa@39D0@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ тангенциальные, а κ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqOUdS2aaSbaaSqaaiaadQgaaeqaaaaa@3AD0@ , τ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqiXdqhaaa@39C8@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ изгибные деформации.

Согласно преобразованиям и введению комплексных усилий

null

где соотношения упругости для ортотропных оболочек имеют вид [4]:

T 1 = B 1 ε 1 + ν 2 ε 2 ,(0.0pt*0.0 1,2 );S= G ˜ hω; M 1 = D 1 κ 1 + ν 2 κ 2 ,(0.0pt*0.0 1,2 );H= G ˜ h 3 /6 τ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabiqaaaqaaiaadsfadaWgaaWcbaGaaGymaaqa baGccaaI9aGaamOqamaaBaaaleaacaaIXaaabeaakmaabmaabaGaeq yTdu2aaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeqyVd42aaSbaaSqa aiaaikdaaeqaaOGaeqyTdu2aaSbaaSqaaiaaikdaaeqaaaGccaGLOa GaayzkaaGaaGilaiaaysW7caaIOaGaaGimaiaai6cacaaIWaGaamiC aiaadshacaaIQaGaaGimaiaai6cacaaIWaqbaeqabmqaaaqaaiabgc ziScqaaiaaigdacaaISaGaaGOmaaqaaiabgkziUcaacaaIPaGaaG4o aiaaywW7caWGtbGaaGypamaaGaaabaGaam4raaGaay5adaGaamiAai abeM8a3jaaiUdaaeaacaWGnbWaaSbaaSqaaiaaigdaaeqaaOGaaGyp aiaadseadaWgaaWcbaGaaGymaaqabaGcdaqadaqaaiabeQ7aRnaaBa aaleaacaaIXaaabeaakiabgUcaRiabe27aUnaaBaaaleaacaaIYaaa beaakiabeQ7aRnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaai aaiYcacaaMe8UaaGikaiaaicdacaaIUaGaaGimaiaadchacaWG0bGa aGOkaiaaicdacaaIUaGaaGimauaabeqadeaaaeaacqGHqgcRaeaaca aIXaGaaGilaiaaikdaaeaacqGHsgIRaaGaaGykaiaaiUdacaaMf8Ua amisaiaai2dadaqadaqaamaaGaaabaGaam4raaGaay5adaGaamiAam aaCaaaleqabaGaaG4maaaakiaai+cacaaI2aaacaGLOaGaayzkaaGa eqiXdqNaaGilaaaaaaa@8C79@

где B 1 = E 1 h 1 ν 1 ν 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOqamaaBaaaleaacaaIXaaabeaakiaai2dadaWc aaqaaiaadweadaWgaaWcbaGaaGymaaqabaGccaWGObaabaGaaGymai abgkHiTiabe27aUnaaBaaaleaacaaIXaaabeaakiabe27aUnaaBaaa leaacaaIYaaabeaaaaaaaa@442B@ , D 1 = E 1 h 3 12 1 ν 1 ν 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiramaaBaaaleaacaaIXaaabeaakiaai2dadaWc aaqaaiaadweadaWgaaWcbaGaaGymaaqabaGccaWGObWaaWbaaSqabe aacaaIZaaaaaGcbaGaaGymaiaaikdadaqadaqaaiaaigdacqGHsisl cqaH9oGBdaWgaaWcbaGaaGymaaqabaGccqaH9oGBdaWgaaWcbaGaaG OmaaqabaaakiaawIcacaGLPaaaaaaaaa@482B@ , G ˜ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGhbaacaGLdmaaaaa@3991@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ модуль сдвига; h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiAaaaa@38F0@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ толщина; E j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyramaaBaaaleaacaWGQbaabeaaaaa@39E8@ , ν j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaadQgaaeqaaaaa@3AD6@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ модули упругости и коэффициенты Пуассона j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOAaaaa@38F2@ -го направления; T ˜ ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaadaaiaaqaaiaadsfaaiaawoWaaaaaaaa@39AF@ , S ˜ ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaadaaiaaqaaiaadofaaiaawoWaaaaaaaa@39AE@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ комплексно-сопряженные величины, получим [2]:

L 1 T ˜ 1 , T ˜ 2 , S ˜ + ic R 1 α 1 A 2 λ T ˜ 1 + T ˜ 2 +ε T ˜ ¯ 1 A 2 α 1 δ T ˜ 1 +λ T ˜ 2 +ε T ˜ ¯ 2 = A 1 A 2 q 1 ;1mm L 2 T ˜ 2 , T ˜ 1 , S ˜ + ic R 2 α 2 A 1 δ T ˜ 1 +λ T ˜ 2 +ε T ˜ ¯ 2 A 1 α 2 λ T ˜ 1 + T ˜ 2 +ε T ˜ ¯ 1 = A 1 A 2 q 2 ;1mm T ˜ 1 R 1 + T ˜ 2 R 2 ic A 1 A 2 α 1 1 A 1 α 1 A 2 λ T ˜ 1 + T ˜ 2 +ε T ˜ ¯ 1 A 2 α 1 δ T ˜ 1 +λ T ˜ 2 +ε T ˜ ¯ 2 + + α 2 1 A 2 α 2 A 1 δ T ˜ 1 +λ T ˜ 2 +ε T ˜ ¯ 2 A 1 α 2 λ T ˜ 1 + T ˜ 2 +ε T ˜ ¯ 1 = q 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabqqaaaaabaGaamitamaaBaaaleaacaaIXaaa beaakmaabmaabaWaaacaaeaacaWGubaacaGLdmaadaWgaaWcbaGaaG ymaaqabaGccaaISaWaaacaaeaacaWGubaacaGLdmaadaWgaaWcbaGa aGOmaaqabaGccaaISaWaaacaaeaacaWGtbaacaGLdmaaaiaawIcaca GLPaaacqGHRaWkdaWcaaqaaiaadMgacaWGJbaabaGaamOuamaaBaaa leaacaaIXaaabeaaaaGcdaWadaqaamaalaaabaGaeyOaIylabaGaey OaIyRaeqySde2aaSbaaSqaaiaaigdaaeqaaaaakiaadgeadaWgaaWc baGaaGOmaaqabaGcdaqadaqaaiabeU7aSnaaGaaabaGaamivaaGaay 5adaWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaacaaeaacaWGubaa caGLdmaadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH1oqzdaqdaa qaamaaGaaabaGaamivaaGaay5adaaaamaaBaaaleaacaaIXaaabeaa aOGaayjkaiaawMcaaiabgkHiTmaalaaabaGaeyOaIyRaamyqamaaBa aaleaacaaIYaaabeaaaOqaaiabgkGi2kabeg7aHnaaBaaaleaacaaI XaaabeaaaaGcdaqadaqaaiabes7aKnaaGaaabaGaamivaaGaay5ada WaaSbaaSqaaiaaigdaaeqaaOGaey4kaSIaeq4UdW2aaacaaeaacaWG ubaacaGLdmaadaWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH1oqzda qdaaqaamaaGaaabaGaamivaaGaay5adaaaamaaBaaaleaacaaIYaaa beaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaiaai2dacqGHsislca WGbbWaaSbaaSqaaiaaigdaaeqaaOGaamyqamaaBaaaleaacaaIYaaa beaakiaadghadaWgaaWcbaGaaGymaaqabaGccaaI7aGaaGymaiaad2 gacaWGTbaabaGaamitamaaBaaaleaacaaIYaaabeaakmaabmaabaWa aacaaeaacaWGubaacaGLdmaadaWgaaWcbaGaaGOmaaqabaGccaaISa WaaacaaeaacaWGubaacaGLdmaadaWgaaWcbaGaaGymaaqabaGccaaI SaWaaacaaeaacaWGtbaacaGLdmaaaiaawIcacaGLPaaacqGHRaWkda WcaaqaaiaadMgacaWGJbaabaGaamOuamaaBaaaleaacaaIYaaabeaa aaGcdaWadaqaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqySde2aaS baaSqaaiaaikdaaeqaaaaakiaadgeadaWgaaWcbaGaaGymaaqabaGc daqadaqaaiabes7aKnaaGaaabaGaamivaaGaay5adaWaaSbaaSqaai aaigdaaeqaaOGaey4kaSIaeq4UdW2aaacaaeaacaWGubaacaGLdmaa daWgaaWcbaGaaGOmaaqabaGccqGHRaWkcqaH1oqzdaqdaaqaamaaGa aabaGaamivaaGaay5adaaaamaaBaaaleaacaaIYaaabeaaaOGaayjk aiaawMcaaiabgkHiTmaalaaabaGaeyOaIyRaamyqamaaBaaaleaaca aIXaaabeaaaOqaaiabgkGi2kabeg7aHnaaBaaaleaacaaIYaaabeaa aaGcdaqadaqaaiabeU7aSnaaGaaabaGaamivaaGaay5adaWaaSbaaS qaaiaaigdaaeqaaOGaey4kaSYaaacaaeaacaWGubaacaGLdmaadaWg aaWcbaGaaGOmaaqabaGccqGHRaWkcqaH1oqzdaqdaaqaamaaGaaaba GaamivaaGaay5adaaaamaaBaaaleaacaaIXaaabeaaaOGaayjkaiaa wMcaaaGaay5waiaaw2faaiaai2dacqGHsislcaWGbbWaaSbaaSqaai aaigdaaeqaaOGaamyqamaaBaaaleaacaaIYaaabeaakiaadghadaWg aaWcbaGaaGOmaaqabaGccaaI7aGaaGymaiaad2gacaWGTbaabaWaaS aaaeaadaaiaaqaaiaadsfaaiaawoWaamaaBaaaleaacaaIXaaabeaa aOqaaiaadkfadaWgaaWcbaGaaGymaaqabaaaaOGaey4kaSYaaSaaae aadaaiaaqaaiaadsfaaiaawoWaamaaBaaaleaacaaIYaaabeaaaOqa aiaadkfadaWgaaWcbaGaaGOmaaqabaaaaOGaeyOeI0YaaSaaaeaaca WGPbGaam4yaaqaaiaadgeadaWgaaWcbaGaaGymaaqabaGccaWGbbWa aSbaaSqaaiaaikdaaeqaaaaakmaaceaabaWaaSaaaeaacqGHciITae aacqGHciITcqaHXoqydaWgaaWcbaGaaGymaaqabaaaaOWaaSaaaeaa caaIXaaabaGaamyqamaaBaaaleaacaaIXaaabeaaaaGcdaWadaqaam aalaaabaGaeyOaIylabaGaeyOaIyRaeqySde2aaSbaaSqaaiaaigda aeqaaaaakiaadgeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaaiabeU 7aSnaaGaaabaGaamivaaGaay5adaWaaSbaaSqaaiaaigdaaeqaaOGa ey4kaSYaaacaaeaacaWGubaacaGLdmaadaWgaaWcbaGaaGOmaaqaba GccqGHRaWkcqaH1oqzdaqdaaqaamaaGaaabaGaamivaaGaay5adaaa amaaBaaaleaacaaIXaaabeaaaOGaayjkaiaawMcaaiabgkHiTmaala aabaGaeyOaIyRaamyqamaaBaaaleaacaaIYaaabeaaaOqaaiabgkGi 2kabeg7aHnaaBaaaleaacaaIXaaabeaaaaGcdaqadaqaaiabes7aKn aaGaaabaGaamivaaGaay5adaWaaSbaaSqaaiaaigdaaeqaaOGaey4k aSIaeq4UdW2aaacaaeaacaWGubaacaGLdmaadaWgaaWcbaGaaGOmaa qabaGccqGHRaWkcqaH1oqzdaqdaaqaamaaGaaabaGaamivaaGaay5a daaaamaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaGaay5wai aaw2faaiabgUcaRaGaay5EaaaabaWaaiGaaeaacqGHRaWkdaWcaaqa aiabgkGi2cqaaiabgkGi2kabeg7aHnaaBaaaleaacaaIYaaabeaaaa GcdaWcaaqaaiaaigdaaeaacaWGbbWaaSbaaSqaaiaaikdaaeqaaaaa kmaadmaabaWaaSaaaeaacqGHciITaeaacqGHciITcqaHXoqydaWgaa WcbaGaaGOmaaqabaaaaOGaamyqamaaBaaaleaacaaIXaaabeaakmaa bmaabaGaeqiTdq2aaacaaeaacaWGubaacaGLdmaadaWgaaWcbaGaaG ymaaqabaGccqGHRaWkcqaH7oaBdaaiaaqaaiaadsfaaiaawoWaamaa BaaaleaacaaIYaaabeaakiabgUcaRiabew7aLnaanaaabaWaaacaae aacaWGubaacaGLdmaaaaWaaSbaaSqaaiaaikdaaeqaaaGccaGLOaGa ayzkaaGaeyOeI0YaaSaaaeaacqGHciITcaWGbbWaaSbaaSqaaiaaig daaeqaaaGcbaGaeyOaIyRaeqySde2aaSbaaSqaaiaaikdaaeqaaaaa kmaabmaabaGaeq4UdW2aaacaaeaacaWGubaacaGLdmaadaWgaaWcba GaaGymaaqabaGccqGHRaWkdaaiaaqaaiaadsfaaiaawoWaamaaBaaa leaacaaIYaaabeaakiabgUcaRiabew7aLnaanaaabaWaaacaaeaaca WGubaacaGLdmaaaaWaaSbaaSqaaiaaigdaaeqaaaGccaGLOaGaayzk aaaacaGLBbGaayzxaaaacaGL9baacaaI9aGaamyCamaaBaaaleaaca aIZaaabeaakiaaiYcaaaaaaa@5238@ (1)

где L 1 T 1 , T 2 ,S = A 2 T 1 α 1 + A 1 S α 2 + A 1 α 2 S A 2 α 1 T 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamitamaaBaaaleaacaaIXaaabeaakmaabmaabaGa amivamaaBaaaleaacaaIXaaabeaakiaaiYcacaWGubWaaSbaaSqaai aaikdaaeqaaOGaaGilaiaadofaaiaawIcacaGLPaaacaaI9aWaaSaa aeaacqGHciITcaWGbbWaaSbaaSqaaiaaikdaaeqaaOGaamivamaaBa aaleaacaaIXaaabeaaaOqaaiabgkGi2kabeg7aHnaaBaaaleaacaaI XaaabeaaaaGccqGHRaWkdaWcaaqaaiabgkGi2kaadgeadaWgaaWcba GaaGymaaqabaGccaWGtbaabaGaeyOaIyRaeqySde2aaSbaaSqaaiaa ikdaaeqaaaaakiabgUcaRmaalaaabaGaeyOaIyRaamyqamaaBaaale aacaaIXaaabeaaaOqaaiabgkGi2kabeg7aHnaaBaaaleaacaaIYaaa beaaaaGccaWGtbGaeyOeI0YaaSaaaeaacqGHciITcaWGbbWaaSbaaS qaaiaaikdaaeqaaaGcbaGaeyOaIyRaeqySde2aaSbaaSqaaiaaigda aeqaaaaakiaadsfadaWgaaWcbaGaaGOmaaqabaaaaa@666A@ ; A j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyqamaaBaaaleaacaWGQbaabeaaaaa@39E4@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ коэффициенты Ляме; R j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOuamaaBaaaleaacaWGQbaabeaaaaa@39F5@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ радиусы кривизны; q j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyCamaaBaaaleaacaWGQbaabeaaaaa@3A14@ , q 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyCamaaBaaaleaacaaIZaaabeaaaaa@39E2@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ касательные и нормальная нагрузки, а безразмерные коэффициенты δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqiTdqgaaa@39A8@ , λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeq4UdWgaaa@39B7@ , ε MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyTdugaaa@39AA@ , K MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4saaaa@38D3@ полностью определяют упругие свойства материала:

δ= E 2 E 1 ;K= 12 1 ν 1 ν 2 δ ;λ= E 2 4 G ˜ + G ˜ 1 ν 1 ν 2 E 1 ;ε= E 2 4 G ˜ G ˜ 1 ν 1 ν 2 E 1 ν 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqiTdqMaaGypamaalaaabaGaamyramaaBaaaleaa caaIYaaabeaaaOqaaiaadweadaWgaaWcbaGaaGymaaqabaaaaOGaaG 4oaiaaywW7caWGlbGaaGypamaakaaabaGaaGymaiaaikdadaqadaqa aiaaigdacqGHsislcqaH9oGBdaWgaaWcbaGaaGymaaqabaGccqaH9o GBdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaacqaH0oazaSqa baGccaaI7aGaaGzbVlabeU7aSjaai2dadaWcaaqaaiaadweadaWgaa WcbaGaaGOmaaqabaaakeaacaaI0aWaaacaaeaacaWGhbaacaGLdmaa aaGaey4kaSYaaSaaaeaadaaiaaqaaiaadEeaaiaawoWaamaabmaaba GaaGymaiabgkHiTiabe27aUnaaBaaaleaacaaIXaaabeaakiabe27a UnaaBaaaleaacaaIYaaabeaaaOGaayjkaiaawMcaaaqaaiaadweada WgaaWcbaGaaGymaaqabaaaaOGaaG4oaiaaywW7cqaH1oqzcaaI9aWa aSaaaeaacaWGfbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaaGinamaaGa aabaGaam4raaGaay5adaaaaiabgkHiTmaalaaabaWaaacaaeaacaWG hbaacaGLdmaadaqadaqaaiaaigdacqGHsislcqaH9oGBdaWgaaWcba GaaGymaaqabaGccqaH9oGBdaWgaaWcbaGaaGOmaaqabaaakiaawIca caGLPaaaaeaacaWGfbWaaSbaaSqaaiaaigdaaeqaaaaakiabgkHiTi abe27aUnaaBaaaleaacaaIYaaabeaakiaai6caaaa@7D3C@

Для изотропного материала эти параметры равны:

δ=λ=1;ε=0;K= 12 1 ν 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqiTdqMaaGypaiabeU7aSjaai2dacaaIXaGaaG4o aiaaywW7cqaH1oqzcaaI9aGaaGimaiaaiUdacaaMf8Uaam4saiaai2 dadaGcaaqaaiaaigdacaaIYaWaaeWaaeaacaaIXaGaeyOeI0IaeqyV d42aaWbaaSqabeaacaaIYaaaaaGccaGLOaGaayzkaaaaleqaaOGaaG Olaaaa@4F3A@

Если допустить, что для ортотропного материала между модулем сдвига и модулями упругости существует связь

G ˜ = G ˜ 0 = E 1 E 2 2 1+ ν 1 ν 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGhbaacaGLdmaacaaI9aWaaacaaeaa caWGhbaacaGLdmaadaWgaaWcbaGaaGimaaqabaGccaaI9aWaaSaaae aadaGcaaqaaiaadweadaWgaaWcbaGaaGymaaqabaGccaWGfbWaaSba aSqaaiaaikdaaeqaaaqabaaakeaacaaIYaWaaeWaaeaacaaIXaGaey 4kaSYaaOaaaeaacqaH9oGBdaWgaaWcbaGaaGymaaqabaGccqaH9oGB daWgaaWcbaGaaGOmaaqabaaabeaaaOGaayjkaiaawMcaaaaacaaISa aaaa@4B2F@

то δ= λ 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqiTdqMaaGypaiabeU7aSnaaCaaaleqabaGaaGOm aaaaaaa@3D0C@ ; ε=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyTduMaaGypaiaaicdaaaa@3B2B@ ; K= 12 1 ν 1 ν 2 λ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4saiaai2dadaGcaaqaaiaaigdacaaIYaWaaeWa aeaacaaIXaGaeyOeI0IaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaeq yVd42aaSbaaSqaaiaaikdaaeqaaaGccaGLOaGaayzkaaaaleqaaOGa eq4UdWgaaa@456E@ и задача путем аффинного преобразования координат может быть сведена к задаче деформирования изотропной оболочки. В этом случае решение будет зависеть только от отношения модулей δ= E 2 / E 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqiTdqMaaGypaiaadweadaWgaaWcbaGaaGOmaaqa baGccaaIVaGaamyramaaBaaaleaacaaIXaaabeaaaaa@3E95@ . Такое решение может давать неплохие результаты, если сдвиговая деформация мало влияет на другие искомые характеристики интегрального типа.

3. Пологие оболочки

Рассмотрим изгиб пологой оболочки нормальной нагрузкой q 3 α 1 , α 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyCamaaBaaaleaacaaIZaaabeaakmaabmaabaGa eqySde2aaSbaaSqaaiaaigdaaeqaaOGaaGilaiabeg7aHnaaBaaale aacaaIYaaabeaaaOGaayjkaiaawMcaaaaa@414C@ . В этом случае в первых двух уравнениях (1) можно пренебречь членами уравнения с множителями 1/ R j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaiaai+cacaWGsbWaaSbaaSqaaiaadQgaaeqa aaaa@3B69@ по сравнению с остальными (главными). Упрощенные таким образом два уравнения удовлетворим с помощью комплексной функции усилий [1]:

T ˜ 1 = 1 A 2 α 2 1 A 2 F ˜ α 2 1 A 1 2 A 2 A 2 α 1 F ˜ α 1 ,(0.0pt*0.0 1,2 ); S ˜ = 1 2 A 2 A 1 α 1 1 A 2 2 F ˜ α 2 + A 1 A 2 α 2 1 A 1 2 F ˜ ¯ α 1 ; F ˜ =Fiμw, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabiqaaaqaamaaGaaabaGaamivaaGaay5adaWa aSbaaSqaaiaaigdaaeqaaOGaaGypaiabgkHiTmaalaaabaGaaGymaa qaaiaadgeadaWgaaWcbaGaaGOmaaqabaaaaOWaaSaaaeaacqGHciIT aeaacqGHciITcqaHXoqydaWgaaWcbaGaaGOmaaqabaaaaOWaaeWaae aadaWcaaqaaiaaigdaaeaacaWGbbWaaSbaaSqaaiaaikdaaeqaaaaa kmaalaaabaGaeyOaIy7aaacaaeaacaWGgbaacaGLdmaaaeaacqGHci ITcqaHXoqydaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGa eyOeI0YaaSaaaeaacaaIXaaabaGaamyqamaaDaaaleaacaaIXaaaba GaaGOmaaaakiaadgeadaWgaaWcbaGaaGOmaaqabaaaaOWaaSaaaeaa cqGHciITcaWGbbWaaSbaaSqaaiaaikdaaeqaaaGcbaGaeyOaIyRaeq ySde2aaSbaaSqaaiaaigdaaeqaaaaakmaalaaabaGaeyOaIy7aaaca aeaacaWGgbaacaGLdmaaaeaacqGHciITcqaHXoqydaWgaaWcbaGaaG ymaaqabaaaaOGaaGilaiaaysW7caaIOaGaaGimaiaai6cacaaIWaGa amiCaiaadshacaaIQaGaaGimaiaai6cacaaIWaqbaeqabmqaaaqaai abgcziScqaaiaaigdacaaISaGaaGOmaaqaaiabgkziUcaacaaIPaGa aG4oaaqaamaaGaaabaGaam4uaaGaay5adaGaaGypamaalaaabaGaaG ymaaqaaiaaikdaaaWaamWaaeaadaWcaaqaaiaadgeadaWgaaWcbaGa aGOmaaqabaaakeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaaaakmaala aabaGaeyOaIylabaGaeyOaIyRaeqySde2aaSbaaSqaaiaaigdaaeqa aaaakmaabmaabaWaaSaaaeaacaaIXaaabaGaamyqamaaDaaaleaaca aIYaaabaGaaGOmaaaaaaGcdaWcaaqaaiabgkGi2oaaGaaabaGaamOr aaGaay5adaaabaGaeyOaIyRaeqySde2aaSbaaSqaaiaaikdaaeqaaa aaaOGaayjkaiaawMcaaiabgUcaRmaalaaabaGaamyqamaaBaaaleaa caaIXaaabeaaaOqaaiaadgeadaWgaaWcbaGaaGOmaaqabaaaaOWaaS aaaeaacqGHciITaeaacqGHciITcqaHXoqydaWgaaWcbaGaaGOmaaqa baaaaOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGbbWaa0baaSqaai aaigdaaeaacaaIYaaaaaaakmaalaaabaGaeyOaIy7aa0aaaeaadaai aaqaaiaadAeaaiaawoWaaaaaaeaacqGHciITcqaHXoqydaWgaaWcba GaaGymaaqabaaaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaaG4o aiaaywW7daaiaaqaaiaadAeaaiaawoWaaiaai2dacaWGgbGaeyOeI0 IaamyAaiabeY7aTjaadEhacaaISaaaaaaa@AF9D@ (1)

где F MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOraaaa@38CE@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ вещественная функция усилий; w MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4Daaaa@38FF@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ прогиб.

Вводя усилия (1) в третье уравнение (1), получим:

ic A 1 A 2 α 1 A 2 A 1 α 1 1 2 F ˜ + α 2 A 1 A 2 α 2 2 2 F ˜ + α 1 1 A 1 A 2 α 1 1 2 F ˜ 2 2 F ˜ + 1mm + α 2 1 A 2 A 1 α 2 2 2 F ˜ 1 2 F ˜ +ε 3 4 F ˜ ¯ D F ˜ = q 3 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabiqaaaqaamaalaaabaGaamyAaiaadogaaeaa caWGbbWaaSbaaSqaaiaaigdaaeqaaOGaamyqamaaBaaaleaacaaIYa aabeaaaaGcdaGabaqaamaalaaabaGaeyOaIylabaGaeyOaIyRaeqyS de2aaSbaaSqaaiaaigdaaeqaaaaakmaalaaabaGaamyqamaaBaaale aacaaIYaaabeaaaOqaaiaadgeadaWgaaWcbaGaaGymaaqabaaaaOWa aSaaaeaacqGHciITaeaacqGHciITcqaHXoqydaWgaaWcbaGaaGymaa qabaaaaOGaey4bIe9aa0baaSqaaiaaigdaaeaacaaIYaaaaOWaaaca aeaacaWGgbaacaGLdmaacqGHRaWkdaWcaaqaaiabgkGi2cqaaiabgk Gi2kabeg7aHnaaBaaaleaacaaIYaaabeaaaaGcdaWcaaqaaiaadgea daWgaaWcbaGaaGymaaqabaaakeaacaWGbbWaaSbaaSqaaiaaikdaae qaaaaakmaalaaabaGaeyOaIylabaGaeyOaIyRaeqySde2aaSbaaSqa aiaaikdaaeqaaaaakiabgEGirpaaDaaaleaacaaIYaaabaGaaGOmaa aakmaaGaaabaGaamOraaGaay5adaGaey4kaSYaaSaaaeaacqGHciIT aeaacqGHciITcqaHXoqydaWgaaWcbaGaaGymaaqabaaaaOWaamWaae aadaWcaaqaaiaaigdaaeaacaWGbbWaaSbaaSqaaiaaigdaaeqaaaaa kmaalaaabaGaeyOaIyRaamyqamaaBaaaleaacaaIYaaabeaaaOqaai abgkGi2kabeg7aHnaaBaaaleaacaaIXaaabeaaaaGcdaqadaqaaiab gEGirpaaDaaaleaacaaIXaaabaGaaGOmaaaakmaaGaaabaGaamOraa Gaay5adaGaeyOeI0Iaey4bIe9aa0baaSqaaiaaikdaaeaacaaIYaaa aOWaaacaaeaacaWGgbaacaGLdmaaaiaawIcacaGLPaaaaiaawUfaca GLDbaacqGHRaWkaiaawUhaaiaaigdacaWGTbGaamyBaaqaamaaciaa baGaey4kaSYaaSaaaeaacqGHciITaeaacqGHciITcqaHXoqydaWgaa WcbaGaaGOmaaqabaaaaOWaamWaaeaadaWcaaqaaiaaigdaaeaacaWG bbWaaSbaaSqaaiaaikdaaeqaaaaakmaalaaabaGaeyOaIyRaamyqam aaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kabeg7aHnaaBaaaleaa caaIYaaabeaaaaGcdaqadaqaaiabgEGirpaaDaaaleaacaaIYaaaba GaaGOmaaaakmaaGaaabaGaamOraaGaay5adaGaeyOeI0Iaey4bIe9a a0baaSqaaiaaigdaaeaacaaIYaaaaOWaaacaaeaacaWGgbaacaGLdm aaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGHRaWkcqaH1oqzcqGH his0daqhaaWcbaGaaG4maaqaaiaaisdaaaGcdaqdaaqaamaaGaaaba GaamOraaGaay5adaaaaaGaayzFaaGaeyOeI0IaamiramaabmaabaWa aacaaeaacaWGgbaacaGLdmaaaiaawIcacaGLPaaacaaI9aGaamyCam aaBaaaleaacaaIZaaabeaakiaaiYcaaaaaaa@B583@ (2)

где

1 2 = 1 A 1 A 2 λ A 2 α 1 1 A 1 α 1 + A 1 α 2 1 A 2 α 2 +[0.0pt*0.0 1,2 ] ; 2 2 = 1 A 1 A 2 λ A 1 α 2 1 A 2 α 2 + A 2 α 1 1 A 1 α 1 +δ[0.0pt*0.0 1,2 ] ; 3 4 = α 1 1 A 1 α 1 α 2 1 A 2 α 2 + 1 A 1 2 A 2 α 1 α 1 1 A 1 A 2 α 1 [0.0pt*0.0 1,2 ] + α 2 1 A 2 {0.0pt*0.0 1,2 }; D = 1 A 1 A 2 α 1 A 2 R 2 A 1 α 1 + α 2 A 1 R 1 A 2 α 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabqqaaaaabaGaey4bIe9aa0baaSqaaiaaigda aeaacaaIYaaaaOGaaGypamaalaaabaGaaGymaaqaaiaadgeadaWgaa WcbaGaaGymaaqabaGccaWGbbWaaSbaaSqaaiaaikdaaeqaaaaakmaa cmaabaGaeq4UdW2aamWaaeaadaWcaaqaaiabgkGi2kaadgeadaWgaa WcbaGaaGOmaaqabaaakeaacqGHciITcqaHXoqydaWgaaWcbaGaaGym aaqabaaaaOWaaeWaaeaadaWcaaqaaiaaigdaaeaacaWGbbWaaSbaaS qaaiaaigdaaeqaaaaakmaalaaabaGaeyOaIylabaGaeyOaIyRaeqyS de2aaSbaaSqaaiaaigdaaeqaaaaaaOGaayjkaiaawMcaaiabgUcaRi aadgeadaWgaaWcbaGaaGymaaqabaGcdaWcaaqaaiabgkGi2cqaaiab gkGi2kabeg7aHnaaBaaaleaacaaIYaaabeaaaaGcdaqadaqaamaala aabaGaaGymaaqaaiaadgeadaWgaaWcbaGaaGOmaaqabaaaaOWaaSaa aeaacqGHciITaeaacqGHciITcqaHXoqydaWgaaWcbaGaaGOmaaqaba aaaaGccaGLOaGaayzkaaaacaGLBbGaayzxaaGaey4kaSIaaG4waiaa icdacaaIUaGaaGimaiaadchacaWG0bGaaGOkaiaaicdacaaIUaGaaG imauaabeqadeaaaeaacqGHqgcRaeaacaaIXaGaaGilaiaaikdaaeaa cqGHsgIRaaGaaGyxaaGaay5Eaiaaw2haaiaaiUdaaeaacqGHhis0da qhaaWcbaGaaGOmaaqaaiaaikdaaaGccaaI9aWaaSaaaeaacaaIXaaa baGaamyqamaaBaaaleaacaaIXaaabeaakiaadgeadaWgaaWcbaGaaG OmaaqabaaaaOWaaiWaaeaacqaH7oaBdaWadaqaamaalaaabaGaeyOa IyRaamyqamaaBaaaleaacaaIXaaabeaaaOqaaiabgkGi2kabeg7aHn aaBaaaleaacaaIYaaabeaaaaGcdaqadaqaamaalaaabaGaaGymaaqa aiaadgeadaWgaaWcbaGaaGOmaaqabaaaaOWaaSaaaeaacqGHciITae aacqGHciITcqaHXoqydaWgaaWcbaGaaGOmaaqabaaaaaGccaGLOaGa ayzkaaGaey4kaSIaamyqamaaBaaaleaacaaIYaaabeaakmaalaaaba GaeyOaIylabaGaeyOaIyRaeqySde2aaSbaaSqaaiaaigdaaeqaaaaa kmaabmaabaWaaSaaaeaacaaIXaaabaGaamyqamaaBaaaleaacaaIXa aabeaaaaGcdaWcaaqaaiabgkGi2cqaaiabgkGi2kabeg7aHnaaBaaa leaacaaIXaaabeaaaaaakiaawIcacaGLPaaaaiaawUfacaGLDbaacq GHRaWkcqaH0oazcaaIBbGaaGimaiaai6cacaaIWaGaamiCaiaadsha caaIQaGaaGimaiaai6cacaaIWaqbaeqabmqaaaqaaiabgcziScqaai aaigdacaaISaGaaGOmaaqaaiabgkziUcaacaaIDbaacaGL7bGaayzF aaGaaG4oaaqaaiabgEGirpaaDaaaleaacaaIZaaabaGaaGinaaaaki aai2dadaWcaaqaaiabgkGi2cqaaiabgkGi2kabeg7aHnaaBaaaleaa caaIXaaabeaaaaGcdaWcaaqaaiaaigdaaeaacaWGbbWaaSbaaSqaai aaigdaaeqaaaaakmaacmaabaWaaSaaaeaacqGHciITaeaacqGHciIT cqaHXoqydaWgaaWcbaGaaGymaaqabaaaaOWaamWaaeaadaWcaaqaai abgkGi2cqaaiabgkGi2kabeg7aHnaaBaaaleaacaaIYaaabeaaaaGc daqadaqaamaalaaabaGaaGymaaqaaiaadgeadaWgaaWcbaGaaGOmaa qabaaaaOWaaSaaaeaacqGHciITaeaacqGHciITcqaHXoqydaWgaaWc baGaaGOmaaqabaaaaaGccaGLOaGaayzkaaGaey4kaSYaaSaaaeaaca aIXaaabaGaamyqamaaDaaaleaacaaIXaaabaGaaGOmaaaaaaGcdaWc aaqaaiabgkGi2kaadgeadaWgaaWcbaGaaGOmaaqabaaakeaacqGHci ITcqaHXoqydaWgaaWcbaGaaGymaaqabaaaaOWaaSaaaeaacqGHciIT aeaacqGHciITcqaHXoqydaWgaaWcbaGaaGymaaqabaaaaaGccaGLBb GaayzxaaGaeyOeI0YaaSaaaeaacaaIXaaabaGaamyqamaaBaaaleaa caaIXaaabeaaaaGcdaWcaaqaaiabgkGi2kaadgeadaWgaaWcbaGaaG OmaaqabaaakeaacqGHciITcqaHXoqydaWgaaWcbaGaaGymaaqabaaa aOGaaG4waiaaicdacaaIUaGaaGimaiaadchacaWG0bGaaGOkaiaaic dacaaIUaGaaGimauaabeqadeaaaeaacqGHqgcRaeaacaaIXaGaaGil aiaaikdaaeaacqGHsgIRaaGaaGyxaaGaay5Eaiaaw2haaiabgUcaRm aalaaabaGaeyOaIylabaGaeyOaIyRaeqySde2aaSbaaSqaaiaaikda aeqaaaaakmaalaaabaGaaGymaaqaaiaadgeadaWgaaWcbaGaaGOmaa qabaaaaOGaaG4EaiaaicdacaaIUaGaaGimaiaadchacaWG0bGaaGOk aiaaicdacaaIUaGaaGimauaabeqadeaaaeaacqGHqgcRaeaacaaIXa GaaGilaiaaikdaaeaacqGHsgIRaaGaaGyFaiaaiUdaaeaacaWGebWa aeWaaeaacaaMi8oacaGLOaGaayzkaaGaaGypamaalaaabaGaaGymaa qaaiaadgeadaWgaaWcbaGaaGymaaqabaGccaWGbbWaaSbaaSqaaiaa ikdaaeqaaaaakmaadmaabaWaaSaaaeaacqGHciITaeaacqGHciITcq aHXoqydaWgaaWcbaGaaGymaaqabaaaaOWaaeWaaeaadaWcaaqaaiaa dgeadaWgaaWcbaGaaGOmaaqabaaakeaacaWGsbWaaSbaaSqaaiaaik daaeqaaOGaamyqamaaBaaaleaacaaIXaaabeaaaaGcdaWcaaqaaiab gkGi2cqaaiabgkGi2kabeg7aHnaaBaaaleaacaaIXaaabeaaaaaaki aawIcacaGLPaaacqGHRaWkdaWcaaqaaiabgkGi2cqaaiabgkGi2kab eg7aHnaaBaaaleaacaaIYaaabeaaaaGcdaqadaqaamaalaaabaGaam yqamaaBaaaleaacaaIXaaabeaaaOqaaiaadkfadaWgaaWcbaGaaGym aaqabaGccaWGbbWaaSbaaSqaaiaaikdaaeqaaaaakmaalaaabaGaey OaIylabaGaeyOaIyRaeqySde2aaSbaaSqaaiaaikdaaeqaaaaaaOGa ayjkaiaawMcaaaGaay5waiaaw2faaiaai6caaaaaaa@51F4@

 

4. Осесимметричная деформация пологой сферической оболочки

Для решения многих задач теории круглых пластин, сферических и конических оболочек вращения эффективно используются гипергеометрические функции.

Плодотворность привлечения для указанной цели теории гипергеометрических функций объясняется тем, что разрешающие дифференциальные уравнения при определенных профилях пластин и законах изменения кривизны оболочек вращения, имеющих практическое значение, приводятся к хорошо изученным гипергеометрическим уравнениям. В то же время использование многочисленных соотношений между этими функциями дает возможность существенно улучшать решения: усиливать сходимость и сокращать число рядов, подлежащих суммированию MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ операции с успехом реализуемые, например, в пакете символьной математики WolframMathematica [6; 7]. Ниже приведены результаты по применению гипергеометрических функций в теории оболочек.

4.1. Сферическая оболочка под действием сосредоточенной кольцевой нагрузки

 

Рисунок 4.1. Сферическая оболочка под действием сосредоточенной кольцевой нагрузки

Fig. 4.1. Spherical shell under the action of concentrated annular load

 

Рассмотрим случай осесимметричной деформации пологой сферической оболочки под действием сосредоточенной кольцевой нагрузки вида [7] (рис. 1):

q 3 = P 2πρ δ ρt =qδ ρt , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyCamaaBaaaleaacaaIZaaabeaakiaai2dacqGH sisldaWcaaqaaiaadcfaaeaacaaIYaGaeqiWdaNaeqyWdihaaiabes 7aKnaabmaabaGaeqyWdiNaeyOeI0IaamiDaaGaayjkaiaawMcaaiaa i2dacqGHsislcaWGXbGaeqiTdq2aaeWaaeaacqaHbpGCcqGHsislca WG0baacaGLOaGaayzkaaGaaGilaaaa@51C6@

где t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiDaaaa@38FC@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ точка приложения кольцевой сосредоточенной нагрузки, а δ ρt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqiTdq2aaeWaaeaacqaHbpGCcqGHsislcaWG0baa caGLOaGaayzkaaaaaa@3ED7@ обобщенная δ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqiTdqgaaa@39A8@ -функция Дирака.

Из уравнения равновесия в комплексной форме (2) в силу осевой симметрии задачи получим:

d 4 F ˜ d ρ 4 + 2 ρ d 3 F ˜ d ρ 3 + ν 2 1 ρ 2 d 2 F ˜ d ρ 2 + 1 ρ 3 d F ˜ dρ +i a 2 d 2 F ˜ d ρ 2 + 1 ρ d F ˜ dρ = iP 2πcρ δ ρt . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaI0aaaaOWa aacaaeaacaWGgbaacaGLdmaaaeaacaWGKbGaeqyWdi3aaWbaaSqabe aacaaI0aaaaaaakiabgUcaRmaalaaabaGaaGOmaaqaaiabeg8aYbaa daWcaaqaaiaadsgadaahaaWcbeqaaiaaiodaaaGcdaaiaaqaaiaadA eaaiaawoWaaaqaaiaadsgacqaHbpGCdaahaaWcbeqaaiaaiodaaaaa aOGaey4kaSIaeqyVd42aaWbaaSqabeaacaaIYaaaaOWaaeWaaeaacq GHsisldaWcaaqaaiaaigdaaeaacqaHbpGCdaahaaWcbeqaaiaaikda aaaaaOWaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOWaaacaae aacaWGgbaacaGLdmaaaeaacaWGKbGaeqyWdi3aaWbaaSqabeaacaaI YaaaaaaakiabgUcaRmaalaaabaGaaGymaaqaaiabeg8aYnaaCaaale qabaGaaG4maaaaaaGcdaWcaaqaaiaadsgadaaiaaqaaiaadAeaaiaa woWaaaqaaiaadsgacqaHbpGCaaaacaGLOaGaayzkaaGaey4kaSIaam yAaiaadggadaahaaWcbeqaaiaaikdaaaGcdaqadaqaamaalaaabaGa amizamaaCaaaleqabaGaaGOmaaaakmaaGaaabaGaamOraaGaay5ada aabaGaamizaiabeg8aYnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWk daWcaaqaaiaaigdaaeaacqaHbpGCaaWaaSaaaeaacaWGKbWaaacaae aacaWGgbaacaGLdmaaaeaacaWGKbGaeqyWdihaaaGaayjkaiaawMca aiaai2dadaWcaaqaaiaadMgacaWGqbaabaGaaGOmaiabec8aWjaado gacqaHbpGCaaGaeqiTdq2aaeWaaeaacqaHbpGCcqGHsislcaWG0baa caGLOaGaayzkaaGaaGOlaaaa@87F1@ (1)

Уравнение (1) может быть приведено к виду:

d dρ ρ Δ ν +i a 2 f ˜ = iP 2πc δ ρt , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaSaaaeaacaWGKbaabaGaamizaiabeg8aYbaadaWa daqaaiabeg8aYnaabmaabaGaeuiLdq0aaSbaaSqaaiabe27aUbqaba GccqGHRaWkcaWGPbGaamyyamaaCaaaleqabaGaaGOmaaaaaOGaayjk aiaawMcaaaGaay5waiaaw2faamaaGaaabaGaamOzaaGaay5adaGaaG ypamaalaaabaGaamyAaiaadcfaaeaacaaIYaGaeqiWdaNaam4yaaaa cqaH0oazdaqadaqaaiabeg8aYjabgkHiTiaadshaaiaawIcacaGLPa aacaaISaaaaa@570F@ (2)

где дифференциальный оператор представим в виде:

Δ ν = d 2 d ρ 2 + 1 ρ d dρ n 2 ρ 2 ; f ˜ = d F ˜ dρ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeuiLdq0aaSbaaSqaaiabe27aUbqabaGccaaI9aWa aSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamizaiabeg 8aYnaaCaaaleqabaGaaGOmaaaaaaGccqGHRaWkdaWcaaqaaiaaigda aeaacqaHbpGCaaWaaSaaaeaacaWGKbaabaGaamizaiabeg8aYbaacq GHsisldaWcaaqaaiaad6gadaahaaWcbeqaaiaaikdaaaaakeaacqaH bpGCdaahaaWcbeqaaiaaikdaaaaaaOGaaG4oaiaaywW7daaiaaqaai aadAgaaiaawoWaaiaai2dadaWcaaqaaiaadsgadaaiaaqaaiaadAea aiaawoWaaaqaaiaadsgacqaHbpGCaaGaaGOlaaaa@58F9@

Однородное дифференциальное уравнение, которое ставится в соответствие неоднородному уравнению (2), есть не что иное, как дифференциальное уравнение Бесселя, решениями которого являются модифицированные функции Бесселя первого и второго рода соответственно I ν i i ρa ,K i i ρa MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaeWaaeaacaWGjbWaaSbaaSqaaiabe27aUbqabaGc daqadaqaaiaadMgadaGcaaqaaiaadMgaaSqabaGccqaHbpGCcaWGHb aacaGLOaGaayzkaaGaaGilaiaadUeadaqadaqaaiaadMgadaGcaaqa aiaadMgaaSqabaGccqaHbpGCcaWGHbaacaGLOaGaayzkaaaacaGLOa Gaayzkaaaaaa@4A2E@ .

Проинтегрировав однородное уравнение, найдем решение уравнения вида:

Δ ν +i a 2 f ˜ = c ρ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaeWaaeaacqqHuoardaWgaaWcbaGaeqyVd4gabeaa kiabgUcaRiaadMgacaWGHbWaaWbaaSqabeaacaaIYaaaaaGccaGLOa GaayzkaaWaaacaaeaacaWGMbaacaGLdmaacaaI9aWaaSaaaeaacaWG JbaabaGaeqyWdihaaiaai6caaaa@466D@ (3)

Для получения фундаментальных решений линейных дифференциальных уравнений с переменными коэффициентами прекрасно себя зарекомендовал метод интегрального преобразования Ханкеля [8 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ 10].

Трансформанта (изображение, образ) f ˜ * s MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGMbaacaGLdmaadaahaaWcbeqaaiaa iQcaaaGcdaqadaqaaiaadohaaiaawIcacaGLPaaaaaa@3D1C@ функции (оригинала, прообраза) f ˜ ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGMbaacaGLdmaadaqadaqaaiabeg8a YbGaayjkaiaawMcaaaaa@3CF9@ интегрального преобразования Ханкеля определяется соотношением вида: f ˜ * s = 0 f ˜ ρ ρ J ν ρs dρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGMbaacaGLdmaadaahaaWcbeqaaiaa iQcaaaGcdaqadaqaaiaadohaaiaawIcacaGLPaaacaaI9aWaa8qCae qaleaacaaIWaaabaGaeyOhIukaniabgUIiYdGcdaaiaaqaaiaadAga aiaawoWaamaabmaabaGaeqyWdihacaGLOaGaayzkaaGaeqyWdiNaam OsamaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaacqaHbpGCcaWGZbaa caGLOaGaayzkaaGaamizaiabeg8aYbaa@52DF@ , где J ν z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOsamaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaa caWG6baacaGLOaGaayzkaaaaaa@3D48@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ цилиндрическая функция Бесселя первого рода ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd4gaaa@39BB@ -го порядка.

Для восстановления оригиналов по известным трансформантам вводят в рассмотрение формулу обращения интегрального преобразования Ханкеля: f ˜ ρ = 0 f ˜ * s s J ν ρs ds MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGMbaacaGLdmaadaqadaqaaiabeg8a YbGaayjkaiaawMcaaiaai2dadaWdXbqabSqaaiaaicdaaeaacqGHEi sPa0Gaey4kIipakmaaGaaabaGaamOzaaGaay5adaWaaWbaaSqabeaa caaIQaaaaOWaaeWaaeaacaWGZbaacaGLOaGaayzkaaGaam4CaiaadQ eadaWgaaWcbaGaeqyVd4gabeaakmaabmaabaGaeqyWdiNaam4CaaGa ayjkaiaawMcaaiaadsgacaWGZbaaaa@514F@ .

Восстановление оригиналов по известным трансформантам осуществляем с помощью таблиц интегралов [10; 11].

Применив к (3) интегральное преобразование Ханкеля и воспользовавшись таблицами интегралов [10; 11], получим следующее выражение для трансформанты интегрального преобразования:

f ˜ * s = 1 s s 2 i a 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGMbaacaGLdmaadaahaaWcbeqaaiaa iQcaaaGcdaqadaqaaiaadohaaiaawIcacaGLPaaacaaI9aGaeyOeI0 YaaSaaaeaacaaIXaaabaGaam4CamaabmaabaGaam4CamaaCaaaleqa baGaaGOmaaaakiabgkHiTiaadMgacaWGHbWaaWbaaSqabeaacaaIYa aaaaGccaGLOaGaayzkaaaaaiaai6caaaa@4873@ (4)

Применив к (4) формулу обращения интегрального преобразования Ханкеля и воспользовавшись таблицами интегралов [10; 11], после ряда преобразований, используя свойства Γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeu4KdCeaaa@396B@ -функций [8; 9], получим:

f ˜ ρ = ρ ν 2 1 1 F 2 1 ; 3+ν 2 , 3ν 2 ; ρ 2 a 2 4 + + π ρ ν a ν1 e 3πi ν1 /4 2 ν+1 Γ ν+1 cos πν 2 1 F 2 ν+1 2 ; ν+1 2 ,ν+1 ; ρ 2 a 2 4 ¯ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabiqaaaqaamaaGaaabaGaamOzaaGaay5adaWa aeWaaeaacqaHbpGCaiaawIcacaGLPaaacaaI9aGaeyOeI0Yaaiqaae aadaWcaaqaaiabeg8aYbqaamaabmaabaGaeqyVd42aaWbaaSqabeaa caaIYaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaadaWgaaWcba GaaGymaaqabaGccaWGgbWaaSbaaSqaaiaaikdaaeqaaOWaaeWaaeaa daGadaqaaiaaigdaaiaawUhacaGL9baacaaI7aWaaiWaaeaadaWcaa qaaiaaiodacqGHRaWkcqaH9oGBaeaacaaIYaaaaiaaiYcadaWcaaqa aiaaiodacqGHsislcqaH9oGBaeaacaaIYaaaaaGaay5Eaiaaw2haai aaiUdacqGHsisldaWcaaqaaiabeg8aYnaaCaaaleqabaGaaGOmaaaa kiaadggadaahaaWcbeqaaiaaikdaaaaakeaacaaI0aaaaaGaayjkai aawMcaaiabgUcaRaGaay5EaaaabaWaaiGaaeaacqGHRaWkdaadaaqa amaalaaabaGaeqiWdaNaeqyWdi3aaWbaaSqabeaacqaH9oGBaaGcca WGHbWaaWbaaSqabeaacqaH9oGBcqGHsislcaaIXaaaaOGaamyzamaa CaaaleqabaGaaG4maiabec8aWjaadMgadaqadaqaaiabe27aUjabgk HiTiaaigdaaiaawIcacaGLPaaacaaIVaGaaGinaaaaaOqaaiaaikda daahaaWcbeqaaiabe27aUjabgUcaRiaaigdaaaGccqqHtoWrdaqada qaaiabe27aUjabgUcaRiaaigdaaiaawIcacaGLPaaaciGGJbGaai4B aiaacohadaWcaaqaaiabec8aWjabe27aUbqaaiaaikdaaaaaamaaBa aaleaacaaIXaaabeaakiaadAeadaWgaaWcbaGaaGOmaaqabaGcdaqa daqaamaacmaabaWaaSaaaeaacqaH9oGBcqGHRaWkcaaIXaaabaGaaG OmaaaaaiaawUhacaGL9baacaaI7aWaaiWaaeaadaWcaaqaaiabe27a UjabgUcaRiaaigdaaeaacaaIYaaaaiaaiYcacqaH9oGBcqGHRaWkca aIXaaacaGL7bGaayzFaaGaaG4oaiabgkHiTmaalaaabaGaeqyWdi3a aWbaaSqabeaacaaIYaaaaOGaamyyamaaCaaaleqabaGaaGOmaaaaaO qaaiaaisdaaaaacaGLOaGaayzkaaaaaaGaayzFaaGaaGOlaaaaaaa@A890@ (5)

Аналогичная процедура в пакете символьной математики WolframMathematica [5; 6] дает оригинал интегрального преобразования Ханкеля следующего вида:

f ˜ ρ = ρ ν 2 1 1 F 2 1 ; 3+ν 2 , 3ν 2 ; ρ 2 a 2 4 + π 1 1/4 2acos πν 2 I ν 1 3/4 ρa ¯ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGMbaacaGLdmaadaqadaqaaiabeg8a YbGaayjkaiaawMcaaiaai2dacqGHsisldaGadaqaamaalaaabaGaeq yWdihabaWaaeWaaeaacqaH9oGBdaahaaWcbeqaaiaaikdaaaGccqGH sislcaaIXaaacaGLOaGaayzkaaaaamaaBaaaleaacaaIXaaabeaaki aadAeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaamaacmaabaGaaGym aaGaay5Eaiaaw2haaiaaiUdadaGadaqaamaalaaabaGaaG4maiabgU caRiabe27aUbqaaiaaikdaaaGaaGilamaalaaabaGaaG4maiabgkHi Tiabe27aUbqaaiaaikdaaaaacaGL7bGaayzFaaGaaG4oaiabgkHiTm aalaaabaGaeqyWdi3aaWbaaSqabeaacaaIYaaaaOGaamyyamaaCaaa leqabaGaaGOmaaaaaOqaaiaaisdaaaaacaGLOaGaayzkaaGaey4kaS YaaWaaaeaadaWcaaqaaiabec8aWnaabmaabaGaeyOeI0IaaGymaaGa ayjkaiaawMcaamaaCaaaleqabaGaaGymaiaai+cacaaI0aaaaaGcba GaaGOmaiaadggaciGGJbGaai4BaiaacohadaWcaaqaaiabec8aWjab e27aUbqaaiaaikdaaaaaaiaadMeadaWgaaWcbaGaeqyVd4gabeaakm aabmaabaGaeyOeI0YaaeWaaeaacqGHsislcaaIXaaacaGLOaGaayzk aaWaaWbaaSqabeaacaaIZaGaaG4laiaaisdaaaGccqaHbpGCcaWGHb aacaGLOaGaayzkaaaaaaGaay5Eaiaaw2haaiaaiYcaaaa@81EF@ (6)

где 1 F 2 a ; β 1 , β 2 ;γ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaSbaaSqaaiaaigdaaeqaaOGaamOramaaBaaaleaa caaIYaaabeaakmaabmaabaWaaiWaaeaacaWGHbaacaGL7bGaayzFaa GaaG4oamaacmaabaGaeqOSdi2aaSbaaSqaaiaaigdaaeqaaOGaaGil aiabek7aInaaBaaaleaacaaIYaaabeaaaOGaay5Eaiaaw2haaiaaiU dacqaHZoWzaiaawIcacaGLPaaaaaa@4A8E@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ частный случай обобщенного гипергеометрического ряда с параметрами 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaaaa@38BE@ и 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGOmaaaa@38BF@ ; Γ x MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeu4KdC0aaeWaaeaacaWG4baacaGLOaGaayzkaaaa aa@3BF1@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ гамма-функция; I ν z MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamysamaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaa caWG6baacaGLOaGaayzkaaaaaa@3D47@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ модифицированная функция Бесселя первого рода ν MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd4gaaa@39BB@ -го порядка.

В результате анализа полученных соотношений оказалось, что подчеркнутые члены уравнений в (5) и (6) с машинной точностью совпадают и, кроме того, являются решением однородного дифференциального уравнения, которое поставлено в соответствие неоднородному уравнению (2). В силу вышесказанного подчеркнутые члены уравнений из дальнейшего рассмотрения исключаем.

Введем обозначение:

G ρ = ρ ν 2 1 1 F 2 1 ; 3+ν 2 , 3ν 2 ; ρ 2 a 2 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGabm4rayaauaWaaeWaaeaacqaHbpGCaiaawIcacaGL PaaacaaI9aWaaSaaaeaacqaHbpGCaeaadaqadaqaaiabe27aUnaaCa aaleqabaGaaGOmaaaakiabgkHiTiaaigdaaiaawIcacaGLPaaaaaWa aSbaaSqaaiaaigdaaeqaaOGaamOramaaBaaaleaacaaIYaaabeaakm aabmaabaWaaiWaaeaacaaIXaaacaGL7bGaayzFaaGaaG4oamaacmaa baWaaSaaaeaacaaIZaGaey4kaSIaeqyVd4gabaGaaGOmaaaacaaISa WaaSaaaeaacaaIZaGaeyOeI0IaeqyVd4gabaGaaGOmaaaaaiaawUha caGL9baacaaI7aGaeyOeI0YaaSaaaeaacqaHbpGCdaahaaWcbeqaai aaikdaaaGccaWGHbWaaWbaaSqabeaacaaIYaaaaaGcbaGaaGinaaaa aiaawIcacaGLPaaacaaIUaaaaa@5F8A@ (7)

Из [11] следует, что введенная в рассмотрение функция есть не что иное, как функция Ломмеля S 0,ν i i ρa MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4uamaaBaaaleaacaaIWaGaaGilaiabe27aUbqa baGcdaqadaqaaiaadMgadaGcaaqaaiaadMgaaSqabaGccqaHbpGCca WGHbaacaGLOaGaayzkaaaaaa@4269@ .

Таким образом, решение дифференциального уравнения (1) примет вид:

F ˜ ρ = C ˜ 1 + C ˜ 2 I ν i i ρa dρ+ C ˜ 3 K ν i i ρa dρ+ C ˜ 4 G ρ dρ, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGgbaacaGLdmaadaqadaqaaiabeg8a YbGaayjkaiaawMcaaiaai2dadaaiaaqaaiaadoeaaiaawoWaamaaBa aaleaacaaIXaaabeaakiabgUcaRmaaGaaabaGaam4qaaGaay5adaWa aSbaaSqaaiaaikdaaeqaaOWaa8qaaeqaleqabeqdcqGHRiI8aOGaam ysamaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaacaWGPbWaaOaaaeaa caWGPbaaleqaaOGaeqyWdiNaamyyaaGaayjkaiaawMcaaiaadsgacq aHbpGCcqGHRaWkdaaiaaqaaiaadoeaaiaawoWaamaaBaaaleaacaaI ZaaabeaakmaapeaabeWcbeqab0Gaey4kIipakiaadUeadaWgaaWcba GaeqyVd4gabeaakmaabmaabaGaamyAamaakaaabaGaamyAaaWcbeaa kiabeg8aYjaadggaaiaawIcacaGLPaaacaWGKbGaeqyWdiNaey4kaS YaaacaaeaacaWGdbaacaGLdmaadaWgaaWcbaGaaGinaaqabaGcdaWd baqabSqabeqaniabgUIiYdGcceWGhbGbaqbadaqadaqaaiabeg8aYb GaayjkaiaawMcaaiaadsgacqaHbpGCcaaISaaaaa@6F05@ (8)

где C ˜ j MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGdbaacaGLdmaadaWgaaWcbaGaamOA aaqabaaaaa@3AA8@ , j= 1,4 ¯ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaeWaaeaacaWGQbGaaGypamaanaaabaGaaGymaiaa iYcacaaI0aaaaaGaayjkaiaawMcaaaaa@3D82@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ произвольные комплексные постоянные.

Проинтегрировав уравнение (2) и применив интегральное преобразование Ханкеля, найдем его частное решение:

Δ ν +i a 2 f ˜ = iP 2πc H ρt ρ , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaeWaaeaacqqHuoardaWgaaWcbaGaeqyVd4gabeaa kiabgUcaRiaadMgacaWGHbWaaWbaaSqabeaacaaIYaaaaaGccaGLOa GaayzkaaWaaacaaeaacaWGMbaacaGLdmaacaaI9aWaaSaaaeaacaWG PbGaamiuaaqaaiaaikdacqaHapaCcaWGJbaaamaalaaabaGaamisam aabmaabaGaeqyWdiNaeyOeI0IaamiDaaGaayjkaiaawMcaaaqaaiab eg8aYbaacaaISaaaaa@50B3@ (9)

где H ρt MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamisamaabmaabaGaeqyWdiNaeyOeI0IaamiDaaGa ayjkaiaawMcaaaaa@3DFF@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ функция Хевисайда.

Следуя методике [12], предварительно найдем решение дифференциального уравнения следующего вида (фундаментальное решение):

Δ ν +i a 2 Φ=δ ρ ρ 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaeWaaeaacqqHuoardaWgaaWcbaGaeqyVd4gabeaa kiabgUcaRiaadMgacaWGHbWaaWbaaSqabeaacaaIYaaaaaGccaGLOa GaayzkaaGaeuOPdyKaaGypaiabes7aKnaabmaabaGaeqyWdiNaeyOe I0IaeqyWdi3aaSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaaG Olaaaa@4C0D@ (10)

Применим к (10) интегральное преобразование Ханкеля, в результате чего получим следующее выражение для трансформанты:

Φ * s = ρ 0 J ν ρ 0 s s 2 i a 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeuOPdy0aaWbaaSqabeaacaaIQaaaaOWaaeWaaeaa caWGZbaacaGLOaGaayzkaaGaaGypaiabgkHiTmaalaaabaGaeqyWdi 3aaSbaaSqaaiaaicdaaeqaaOGaamOsamaaBaaaleaacqaH9oGBaeqa aOWaaeWaaeaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGZbaaca GLOaGaayzkaaaabaGaam4CamaaCaaaleqabaGaaGOmaaaakiabgkHi TiaadMgacaWGHbWaaWbaaSqabeaacaaIYaaaaaaakiaai6caaaa@4FA2@ (11)

Применим к (11) формулу обращения интегрального преобразования Ханкеля:

Φ ρ, ρ 0 = ρ 0 0 s J ν ρs J ν ρ 0 s s 2 i a 2 ds. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeuOPdy0aaeWaaeaacqaHbpGCcaaISaGaeqyWdi3a aSbaaSqaaiaaicdaaeqaaaGccaGLOaGaayzkaaGaaGypaiabgkHiTi abeg8aYnaaBaaaleaacaaIWaaabeaakmaapehabeWcbaGaaGimaaqa aiabg6HiLcqdcqGHRiI8aOWaaSaaaeaacaWGZbGaamOsamaaBaaale aacqaH9oGBaeqaaOWaaeWaaeaacqaHbpGCcaWGZbaacaGLOaGaayzk aaGaamOsamaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaacqaHbpGCda WgaaWcbaGaaGimaaqabaGccaWGZbaacaGLOaGaayzkaaaabaGaam4C amaaCaaaleqabaGaaGOmaaaakiabgkHiTiaadMgacaWGHbWaaWbaaS qabeaacaaIYaaaaaaakiaadsgacaWGZbGaaGOlaaaa@615B@ (12)

Интеграл в (12) является табличным [11] и имеет вид:

null (13)

В соответствии со свойством фундаментального решения для истинной нагрузки имеем следующее решение:

f ˜ ÷àñò ρ,t = iP 2πc 0 b H ρ 0 t ρ 0 Φ ρ, ρ 0 ρ 0 d ρ 0 = iP 2πc t b Φ ρ, ρ 0 d ρ 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGMbaacaGLdmaadaWgaaWcbaGaaGjc VlaaiEpacaaIGdGaaGy8aiaaikpacaaMi8oabeaakmaabmaabaGaeq yWdiNaaGilaiaadshaaiaawIcacaGLPaaacaaI9aWaaSaaaeaacaWG PbGaamiuaaqaaiaaikdacqaHapaCcaWGJbaaamaapehabeWcbaGaaG imaaqaaiaadkgaa0Gaey4kIipakmaalaaabaGaamisamaabmaabaGa eqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaeyOeI0IaamiDaaGaayjkai aawMcaaaqaaiabeg8aYnaaBaaaleaacaaIWaaabeaaaaGccqqHMoGr daqadaqaaiabeg8aYjaaiYcacqaHbpGCdaWgaaWcbaGaaGimaaqaba aakiaawIcacaGLPaaacqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWG KbGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaaGypamaalaaabaGaam yAaiaadcfaaeaacaaIYaGaeqiWdaNaam4yaaaadaWdXbqabSqaaiaa dshaaeaacaWGIbaaniabgUIiYdGccqqHMoGrdaqadaqaaiabeg8aYj aaiYcacqaHbpGCdaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaa caWGKbGaeqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaaGOlaaaa@80D9@ (14)

В области ρ<t< ρ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyWdiNaaGipaiaadshacaaI8aGaeqyWdi3aaSba aSqaaiaaicdaaeqaaaaa@3EEE@ , очевидно, нужно использовать верхнюю формулу в (13):

f ˜ ÷àñò ρ,t = iP 2πc I ν i i ρa t b ρ 0 K ν i i ρ 0 a d ρ 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGMbaacaGLdmaadaWgaaWcbaGaaGjc VlaaiEpacaaIGdGaaGy8aiaaikpacaaMi8oabeaakmaabmaabaGaeq yWdiNaaGilaiaadshaaiaawIcacaGLPaaacaaI9aGaeyOeI0YaaSaa aeaacaWGPbGaamiuaaqaaiaaikdacqaHapaCcaWGJbaaaiaadMeada WgaaWcbaGaeqyVd4gabeaakmaabmaabaGaamyAamaakaaabaGaamyA aaWcbeaakiabeg8aYjaadggaaiaawIcacaGLPaaadaWdXbqabSqaai aadshaaeaacaWGIbaaniabgUIiYdGccqaHbpGCdaWgaaWcbaGaaGim aaqabaGccaWGlbWaaSbaaSqaaiabe27aUbqabaGcdaqadaqaaiaadM gadaGcaaqaaiaadMgaaSqabaGccqaHbpGCdaWgaaWcbaGaaGimaaqa baGccaWGHbaacaGLOaGaayzkaaGaamizaiabeg8aYnaaBaaaleaaca aIWaaabeaakiaai6caaaa@6CE9@ (15)

В случае ρ>t MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyWdiNaaGOpaiaadshaaaa@3B84@ интеграл приходится разбивать на два (т. к. имеют место два варианта t<ρ< ρ 0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiDaiaaiYdacqaHbpGCcaaI8aGaeqyWdi3aaSba aSqaaiaaicdaaeqaaaaa@3EEE@ и t< ρ 0 <ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiDaiaaiYdacqaHbpGCdaWgaaWcbaGaaGimaaqa baGccaaI8aGaeqyWdihaaa@3EF8@ ) и использовать обе формулы соотношения (13):

f ˜ ÷àñò ρ,t = iP 2πc K ν i i ρa t ρ ρ 0 I ν i i ρ 0 a d ρ 0 + I ν i i ρa ρ b ρ 0 K ν i i ρ 0 a d ρ 0 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGMbaacaGLdmaadaWgaaWcbaGaaGjc VlaaiEpacaaIGdGaaGy8aiaaikpacaaMi8oabeaakmaabmaabaGaeq yWdiNaaGilaiaadshaaiaawIcacaGLPaaacaaI9aGaeyOeI0YaaSaa aeaacaWGPbGaamiuaaqaaiaaikdacqaHapaCcaWGJbaaamaabmaaba Gaam4samaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaacaWGPbWaaOaa aeaacaWGPbaaleqaaOGaeqyWdiNaamyyaaGaayjkaiaawMcaamaape habeWcbaGaamiDaaqaaiabeg8aYbqdcqGHRiI8aOGaeqyWdi3aaSba aSqaaiaaicdaaeqaaOGaamysamaaBaaaleaacqaH9oGBaeqaaOWaae WaaeaacaWGPbWaaOaaaeaacaWGPbaaleqaaOGaeqyWdi3aaSbaaSqa aiaaicdaaeqaaOGaamyyaaGaayjkaiaawMcaaiaadsgacqaHbpGCda WgaaWcbaGaaGimaaqabaGccqGHRaWkcaWGjbWaaSbaaSqaaiabe27a UbqabaGcdaqadaqaaiaadMgadaGcaaqaaiaadMgaaSqabaGccqaHbp GCcaWGHbaacaGLOaGaayzkaaWaa8qCaeqaleaacqaHbpGCaeaacaWG IbaaniabgUIiYdGccqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGlb WaaSbaaSqaaiabe27aUbqabaGcdaqadaqaaiaadMgadaGcaaqaaiaa dMgaaSqabaGccqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGHbaaca GLOaGaayzkaaGaamizaiabeg8aYnaaBaaaleaacaaIWaaabeaaaOGa ayjkaiaawMcaaiaai6caaaa@8E5B@ (16)

Добавив к выражениям (15) и (16) слагаемое, только знаком отличающееся от (15), и интегрируя полученное выражение по переменной ρ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyWdihaaa@39C3@ , получим:

F ˜ ÷àñò ρ,t = iP 2πc 0,ρ<t; t ρ K ν i i ρa t ρ ρ 0 I ν i i ρ 0 a d ρ 0 I ν i i ρa t ρ ρ 0 K ν i i ρ 0 a d ρ 0 dρ,ρ>t. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGgbaacaGLdmaadaWgaaWcbaGaaGjc VlaaiEpacaaIGdGaaGy8aiaaikpacaaMi8oabeaakmaabmaabaGaeq yWdiNaaGilaiaadshaaiaawIcacaGLPaaacaaI9aGaeyOeI0YaaSaa aeaacaWGPbGaamiuaaqaaiaaikdacqaHapaCcaWGJbaaamaaceaaba qbaeaabmqaaaqaaiaaicdacaaISaGaaGzbVlabeg8aYjaaiYdacaWG 0bGaaG4oaaqaamaapehabeWcbaGaamiDaaqaaiabeg8aYbqdcqGHRi I8aOWaaeqaaeaacaWGlbWaaSbaaSqaaiabe27aUbqabaGcdaqadaqa aiaadMgadaGcaaqaaiaadMgaaSqabaGccqaHbpGCcaWGHbaacaGLOa GaayzkaaWaa8qCaeqaleaacaWG0baabaGaeqyWdihaniabgUIiYdGc cqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGjbWaaSbaaSqaaiabe2 7aUbqabaGcdaqadaqaaiaadMgadaGcaaqaaiaadMgaaSqabaGccqaH bpGCdaWgaaWcbaGaaGimaaqabaGccaWGHbaacaGLOaGaayzkaaGaam izaiabeg8aYnaaBaaaleaacaaIWaaabeaakiabgkHiTaGaayjkaaaa baWaaeGaaeaacqGHsislcaWGjbWaaSbaaSqaaiabe27aUbqabaGcda qadaqaaiaadMgadaGcaaqaaiaadMgaaSqabaGccqaHbpGCcaWGHbaa caGLOaGaayzkaaWaa8qCaeqaleaacaWG0baabaGaeqyWdihaniabgU IiYdGccqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGlbWaaSbaaSqa aiabe27aUbqabaGcdaqadaqaaiaadMgadaGcaaqaaiaadMgaaSqaba GccqaHbpGCdaWgaaWcbaGaaGimaaqabaGccaWGHbaacaGLOaGaayzk aaGaamizaiabeg8aYnaaBaaaleaacaaIWaaabeaaaOGaayzkaaGaam izaiabeg8aYjaaiYcacaaMf8UaeqyWdiNaaGOpaiaadshacaaIUaaa aaGaay5Eaaaaaa@A54F@ (17)

Очевидно, что во всей исследуемой области получим выражение вида:

F ˜ ÷àñò ρ,t = iP 2πc t ρ K ν i i ρa t ρ ρ 0 I ν i i ρ 0 a d ρ 0 I ν i i ρa t ρ ρ 0 K ν i i ρ 0 a d ρ 0 dsH ρt . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabiqaaaqaamaaGaaabaGaamOraaGaay5adaWa aSbaaSqaaiaayIW7caaI3dGaaGi4aiaaigpacaaIYdGaaGjcVdqaba Gcdaqadaqaaiabeg8aYjaaiYcacaWG0baacaGLOaGaayzkaaGaaGyp aiabgkHiTmaalaaabaGaamyAaiaadcfaaeaacaaIYaGaeqiWdaNaam 4yaaaadaWdXbqabSqaaiaadshaaeaacqaHbpGCa0Gaey4kIipakmaa beaabaGaam4samaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaacaWGPb WaaOaaaeaacaWGPbaaleqaaOGaeqyWdiNaamyyaaGaayjkaiaawMca amaapehabeWcbaGaamiDaaqaaiabeg8aYbqdcqGHRiI8aOGaeqyWdi 3aaSbaaSqaaiaaicdaaeqaaOGaamysamaaBaaaleaacqaH9oGBaeqa aOWaaeWaaeaacaWGPbWaaOaaaeaacaWGPbaaleqaaOGaeqyWdi3aaS baaSqaaiaaicdaaeqaaOGaamyyaaGaayjkaiaawMcaaiaadsgacqaH bpGCdaWgaaWcbaGaaGimaaqabaGccqGHsislaiaawIcaaaqaamaabi aabaGaeyOeI0IaamysamaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaa caWGPbWaaOaaaeaacaWGPbaaleqaaOGaeqyWdiNaamyyaaGaayjkai aawMcaamaapehabeWcbaGaamiDaaqaaiabeg8aYbqdcqGHRiI8aOGa eqyWdi3aaSbaaSqaaiaaicdaaeqaaOGaam4samaaBaaaleaacqaH9o GBaeqaaOWaaeWaaeaacaWGPbWaaOaaaeaacaWGPbaaleqaaOGaeqyW di3aaSbaaSqaaiaaicdaaeqaaOGaamyyaaGaayjkaiaawMcaaiaads gacqaHbpGCdaWgaaWcbaGaaGimaaqabaaakiaawMcaaiaadsgacaWG ZbGaeyyXICTaamisamaabmaabaGaeqyWdiNaeyOeI0IaamiDaaGaay jkaiaawMcaaiaai6caaaaaaa@9EAB@ (18)

В результате найдем следующее представление для общего решения неоднородного уравнения (1):

F ˜ ρ,t = C ˜ 1 + C ˜ 2 I ν i i ρa dρ+ C ˜ 3 K ν i i ρa dρ+ C ˜ 4 G ρ dρ+ F ˜ ÷àñò ρ,t . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGgbaacaGLdmaadaqadaqaaiabeg8a YjaaiYcacaWG0baacaGLOaGaayzkaaGaaGypamaaGaaabaGaam4qaa Gaay5adaWaaSbaaSqaaiaaigdaaeqaaOGaey4kaSYaaacaaeaacaWG dbaacaGLdmaadaWgaaWcbaGaaGOmaaqabaGcdaWdbaqabSqabeqani abgUIiYdGccaWGjbWaaSbaaSqaaiabe27aUbqabaGcdaqadaqaaiaa dMgadaGcaaqaaiaadMgaaSqabaGccqaHbpGCcaWGHbaacaGLOaGaay zkaaGaamizaiabeg8aYjabgUcaRmaaGaaabaGaam4qaaGaay5adaWa aSbaaSqaaiaaiodaaeqaaOWaa8qaaeqaleqabeqdcqGHRiI8aOGaam 4samaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaacaWGPbWaaOaaaeaa caWGPbaaleqaaOGaeqyWdiNaamyyaaGaayjkaiaawMcaaiaadsgacq aHbpGCcqGHRaWkdaaiaaqaaiaadoeaaiaawoWaamaaBaaaleaacaaI 0aaabeaakmaapeaabeWcbeqab0Gaey4kIipakiqadEeagaafamaabm aabaGaeqyWdihacaGLOaGaayzkaaGaamizaiabeg8aYjabgUcaRmaa GaaabaGaamOraaGaay5adaWaaSbaaSqaaiaayIW7caaI3dGaaGi4ai aaigpacaaIYdGaaGjcVdqabaGcdaqadaqaaiabeg8aYjaaiYcacaWG 0baacaGLOaGaayzkaaGaaGOlaaaa@8157@ (19)

При кривизне сферической оболочки вращения равной нулю (т. е. сферическая оболочка вырождается в круглую пластину) и отделении мнимой части общего решения уравнения (19) прогиб ортотропной пластины, находящейся под действием кольцевой сосредоточенной нагрузки P MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiuaaaa@38D8@ , при произвольных граничных условиях принимает вид:

w ξ, ξ 0 = C 1 + C 2 ξ 1+ν + C 3 ξ 1ν + C 4 ξ 2 + + P b 2 4πν ν 2 1 ξ 0 D 1 ν ξ 0 ξ 0 2 ξ 2 + ξ 0 2ν ξ 1+ν ξ 0 2+ν ξ 1ν H ξ ξ 0 ;ξ= ρ b ; ξ 0 = t b ;0ξ1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabiqaaaqaaiaadEhadaqadaqaaiabe67a4jaa iYcacqaH+oaEdaWgaaWcbaGaaGimaaqabaaakiaawIcacaGLPaaaca aI9aGaam4qamaaBaaaleaacaaIXaaabeaakiabgUcaRiaadoeadaWg aaWcbaGaaGOmaaqabaGccqaH+oaEdaahaaWcbeqaaiaaigdacqGHRa WkcqaH9oGBaaGccqGHRaWkcaWGdbWaaSbaaSqaaiaaiodaaeqaaOGa eqOVdG3aaWbaaSqabeaacaaIXaGaeyOeI0IaeqyVd4gaaOGaey4kaS Iaam4qamaaBaaaleaacaaI0aaabeaakiabe67a4naaCaaaleqabaGa aGOmaaaakiabgUcaRaqaaiabgUcaRmaalaaabaGaamiuaiaadkgada ahaaWcbeqaaiaaikdaaaaakeaacaaI0aGaeqiWdaNaeqyVd42aaeWa aeaacqaH9oGBdaahaaWcbeqaaiaaikdaaaGccqGHsislcaaIXaaaca GLOaGaayzkaaGaeqOVdG3aaSbaaSqaaiaaicdaaeqaaOGaamiramaa BaaaleaacaaIXaaabeaaaaGcdaWadaqaaiabe27aUjabe67a4naaBa aaleaacaaIWaaabeaakmaabmaabaGaeqOVdG3aa0baaSqaaiaaicda aeaacaaIYaaaaOGaeyOeI0IaeqOVdG3aaWbaaSqabeaacaaIYaaaaa GccaGLOaGaayzkaaGaey4kaSIaeqOVdG3aa0baaSqaaiaaicdaaeaa caaIYaGaeyOeI0IaeqyVd4gaaOGaeqOVdG3aaWbaaSqabeaacaaIXa Gaey4kaSIaeqyVd4gaaOGaeyOeI0IaeqOVdG3aa0baaSqaaiaaicda aeaacaaIYaGaey4kaSIaeqyVd4gaaOGaeqOVdG3aaWbaaSqabeaaca aIXaGaeyOeI0IaeqyVd4gaaaGccaGLBbGaayzxaaGaamisamaabmaa baGaeqOVdGNaeyOeI0IaeqOVdG3aaSbaaSqaaiaaicdaaeqaaaGcca GLOaGaayzkaaGaaG4oaiaaywW7cqaH+oaEcaaI9aWaaSaaaeaacqaH bpGCaeaacaWGIbaaaiaaiUdacaaMf8UaeqOVdG3aaSbaaSqaaiaaic daaeqaaOGaaGypamaalaaabaGaamiDaaqaaiaadkgaaaGaaG4oaiaa ywW7caaIWaGaeyizImQaeqOVdGNaeyizImQaaGymaiaaiYcaaaaaaa@B2BB@ (20)

который совпадает при ξ 0 = t b =0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqOVdG3aaSbaaSqaaiaaicdaaeqaaOGaaGypamaa laaabaGaamiDaaqaaiaadkgaaaGaaGypaiaaicdaaaa@3EEE@ с представлением, полученным в [13].

В случае приложения сосредоточенной нагрузки в полюсе сферической оболочки общее решение неоднородного уравнения (2) имеет вид (19) при t=0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiDaiaai2dacaaIWaaaaa@3A7D@ .

Рассмотрим граничные условия, соответствующие скользящей заделке контура:

w= dw dρ = T 1 =0ïðèρ=b, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4Daiaai2dadaWcaaqaaiaadsgacaWG3baabaGa amizaiabeg8aYbaacaaI9aGaamivamaaBaaaleaacaaIXaaabeaaki aai2dacaaIWaGaaGzbVlaayIW7caaIVdGaaGi8aiaaiIoacaaMi8Ua aGjbVlabeg8aYjaai2dacaWGIbGaaGilaaaa@513C@ (21)

которые можно сформулировать для искомой комплексной функции усилий следующим образом:

F ˜ = d F ˜ dρ =0ïðèρ=b. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGgbaacaGLdmaacaaI9aWaaSaaaeaa caWGKbWaaacaaeaacaWGgbaacaGLdmaaaeaacaWGKbGaeqyWdihaai aai2dacaaIWaGaaGzbVlaayIW7caaIVdGaaGi8aiaaiIoacaaMi8Ua aGjbVlabeg8aYjaai2dacaWGIbGaaGOlaaaa@4FCF@ (22)

Кроме того, потребуем конечность искомых функций в центре:

C ˜ 3 =0, C ˜ 4 =0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGdbaacaGLdmaadaWgaaWcbaGaaG4m aaqabaGccaaI9aGaaGimaiaaiYcacaaMf8+aaacaaeaacaWGdbaaca GLdmaadaWgaaWcbaGaaGinaaqabaGccaaI9aGaaGimaiaai6caaaa@42FC@ (23)

Остальные постоянные определим из (21):

null (24)

В результате подстановки (24) в (19) получим следующее выражение:

F ˜ ρ =Fiμw= iP 2πc Q b G b P ν bai i I ν bai i + G b I ν bai i I ν i i ρa dρ G ρ dρ ; w= 1 μ Im F ˜ ρ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabiqaaaqaamaaGaaabaGaamOraaGaay5adaWa aeWaaeaacqaHbpGCaiaawIcacaGLPaaacaaI9aGaamOraiabgkHiTi aadMgacqaH8oqBcaWG3bGaaGypamaalaaabaGaamyAaiaadcfaaeaa caaIYaGaeqiWdaNaam4yaaaadaqadaqaaiaadgfadaqadaqaaiaadk gaaiaawIcacaGLPaaacqGHsisldaWcaaqaaiqadEeagaafamaabmaa baGaamOyaaGaayjkaiaawMcaaiaadcfadaWgaaWcbaGaeqyVd4gabe aakmaabmaabaGaamOyaiaadggacaWGPbWaaOaaaeaacaWGPbaaleqa aaGccaGLOaGaayzkaaaabaGaamysamaaBaaaleaacqaH9oGBaeqaaO WaaeWaaeaacaWGIbGaamyyaiaadMgadaGcaaqaaiaadMgaaSqabaaa kiaawIcacaGLPaaaaaGaey4kaSYaaSaaaeaaceWGhbGbaqbadaqada qaaiaadkgaaiaawIcacaGLPaaaaeaacaWGjbWaaSbaaSqaaiabe27a UbqabaGcdaqadaqaaiaadkgacaWGHbGaamyAamaakaaabaGaamyAaa WcbeaaaOGaayjkaiaawMcaaaaadaWdbaqabSqabeqaniabgUIiYdGc caWGjbWaaSbaaSqaaiabe27aUbqabaGcdaqadaqaaiaadMgadaGcaa qaaiaadMgaaSqabaGccqaHbpGCcaWGHbaacaGLOaGaayzkaaGaamiz aiabeg8aYjabgkHiTmaapeaabeWcbeqab0Gaey4kIipakiqadEeaga afamaabmaabaGaeqyWdihacaGLOaGaayzkaaGaamizaiabeg8aYbGa ayjkaiaawMcaaiaaiUdaaeaacaWG3bGaaGypamaalaaabaGaaGymaa qaaiabeY7aTbaacaqGjbGaaeyBamaabmaabaWaaacaaeaacaWGgbaa caGLdmaadaqadaqaaiabeg8aYbGaayjkaiaawMcaaaGaayjkaiaawM caaiaai6caaaaaaa@93EF@ (25)

В результате преобразований выражение для прогиба примет вид:

w= P 2πμc Im i ρ b G ρ dρ+ G b I ν bai i b ρ I ν i i ρa dρ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4Daiaai2dacqGHsisldaWcaaqaaiaadcfaaeaa caaIYaGaeqiWdaNaeqiVd0Maam4yaaaacaqGjbGaaeyBamaacmaaba GaamyAamaabmaabaWaa8qCaeqaleaacqaHbpGCaeaacaWGIbaaniab gUIiYdGcceWGhbGbaqbadaqadaqaaiabeg8aYbGaayjkaiaawMcaai aadsgacqaHbpGCcqGHRaWkdaWcaaqaaiqadEeagaafamaabmaabaGa amOyaaGaayjkaiaawMcaaaqaaiaadMeadaWgaaWcbaGaeqyVd4gabe aakmaabmaabaGaamOyaiaadggacaWGPbWaaOaaaeaacaWGPbaaleqa aaGccaGLOaGaayzkaaaaamaapehabeWcbaGaamOyaaqaaiabeg8aYb qdcqGHRiI8aOGaamysamaaBaaaleaacqaH9oGBaeqaaOWaaeWaaeaa caWGPbWaaOaaaeaacaWGPbaaleqaaOGaeqyWdiNaamyyaaGaayjkai aawMcaaiaadsgacqaHbpGCaiaawIcacaGLPaaaaiaawUhacaGL9baa caaIUaaaaa@70CB@ (26)

 

Входящая в (26) константа μc= D 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqiVd0MaeyyXICTaam4yaiaai2dacaWGebWaaSba aSqaaiaaigdaaeqaaaaa@3F62@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ жесткость в меридиональном направлении.

Интегралы, входящие в (26), легко вычисляются через гипергеометрические функции.

Вводя обозначения k= b 2 Rh MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4Aaiaai2dadaWcaaqaaiaadkgadaahaaWcbeqa aiaaikdaaaaakeaacaWGsbGaamiAaaaaaaa@3D68@ ; ξ= ρ b MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqOVdGNaaGypamaalaaabaGaeqyWdihabaGaamOy aaaaaaa@3D44@ ; w ¯ = w h MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaacaWG3baaaiaai2dadaWcaaqaaiaadEha aeaacaWGObaaaaaa@3BD0@ ; P ¯ = P b 2 E 1 h 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaacaWGqbaaaiaai2dadaWcaaqaaiaadcfa caWGIbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamyramaaBaaaleaaca aIXaaabeaakiaadIgadaahaaWcbeqaaiaaisdaaaaaaaaa@4002@ и вычислив с помощью пакета символьной математики WolframMathematica [5; 6] входящие в (26) интегралы от гипергеометрических функций, которые также выражаются через гипергеометрические функции, получим выражение для распределения относительного прогиба w ¯ ξ MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaacaWG3baaamaabmaabaGaeqOVdGhacaGL OaGaayzkaaaaaa@3C5C@ . Эпюра относительного прогиба под действием силы в полюсе на основе (26) вычисляется по следующей формуле:

w ¯ ξ = 6 1 ν 1 ν 2 P ¯ π n 2 1 Re A ξ n+1 1 F 2 n+1 2 ; n+3 2 n+1 ; i 4 k n 2 ξ 2 1 F 2 n+1 2 ; n+3 2 n+1 ; i 4 k n 2 + + 1 2 2 F 3 1,1;2, 3n 2 , 3+n 2 ; i 4 k n 2 ξ 2 2 F 3 1,1;2, 3n 2 , 3+n 2 ; i 4 k n 2 ξ 2 , (4.26a) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabiqaaaqaamaanaaabaGaam4Daaaadaqadaqa aiabe67a4bGaayjkaiaawMcaaiaai2dacqGHsisldaWcaaqaaiaaiA dadaqadaqaaiaaigdacqGHsislcqaH9oGBdaWgaaWcbaGaaGymaaqa baGccqaH9oGBdaWgaaWcbaGaaGOmaaqabaaakiaawIcacaGLPaaada qdaaqaaiaadcfaaaaabaGaeqiWda3aaeWaaeaacaWGUbWaaWbaaSqa beaacaaIYaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMcaaaaacaqGsb GaaeyzamaaceaabaGaamyqamaadmaabaGaeqOVdG3aaWbaaSqabeaa caWGUbGaey4kaSIaaGymaaaakmaaBaaaleaacaaIXaaabeaakiaadA eadaWgaaWcbaGaaGOmaaqabaGcdaqadaqaamaalaaabaGaamOBaiab gUcaRiaaigdaaeaacaaIYaaaaiaaiUdadaWcaaqaaiaad6gacqGHRa WkcaaIZaaabaGaaGOmaaaadaqadaqaaiaad6gacqGHRaWkcaaIXaaa caGLOaGaayzkaaGaaG4oaiabgkHiTmaalaaabaGaamyAaaqaaiaais daaaGaam4AamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabe67a4naa CaaaleqabaGaaGOmaaaaaOGaayjkaiaawMcaaiabgkHiTmaaBaaale aacaaIXaaabeaakiaadAeadaWgaaWcbaGaaGOmaaqabaGcdaqadaqa amaalaaabaGaamOBaiabgUcaRiaaigdaaeaacaaIYaaaaiaaiUdada Wcaaqaaiaad6gacqGHRaWkcaaIZaaabaGaaGOmaaaadaqadaqaaiaa d6gacqGHRaWkcaaIXaaacaGLOaGaayzkaaGaaG4oaiabgkHiTmaala aabaGaamyAaaqaaiaaisdaaaGaam4AamaaDaaaleaacaWGUbaabaGa aGOmaaaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaiabgUcaRaGaay 5EaaaabaWaaiGaaeaacqGHRaWkdaWcaaqaaiaaigdaaeaacaaIYaaa amaadmaabaWaaSbaaSqaaiaaikdaaeqaaOGaamOramaaBaaaleaaca aIZaaabeaakmaabmaabaGaaGymaiaaiYcacaaIXaGaaG4oaiaaikda caaISaWaaSaaaeaacaaIZaGaeyOeI0IaamOBaaqaaiaaikdaaaGaaG ilamaalaaabaGaaG4maiabgUcaRiaad6gaaeaacaaIYaaaaiaaiUda cqGHsisldaWcaaqaaiaadMgaaeaacaaI0aaaaiaadUgadaqhaaWcba GaamOBaaqaaiaaikdaaaaakiaawIcacaGLPaaacqGHsislcqaH+oaE daahaaWcbeqaaiaaikdaaaGcdaWgaaWcbaGaaGOmaaqabaGccaWGgb WaaSbaaSqaaiaaiodaaeqaaOWaaeWaaeaacaaIXaGaaGilaiaaigda caaI7aGaaGOmaiaaiYcadaWcaaqaaiaaiodacqGHsislcaWGUbaaba GaaGOmaaaacaaISaWaaSaaaeaacaaIZaGaey4kaSIaamOBaaqaaiaa ikdaaaGaaG4oaiabgkHiTmaalaaabaGaamyAaaqaaiaaisdaaaGaam 4AamaaDaaaleaacaWGUbaabaGaaGOmaaaakiabe67a4naaCaaaleqa baGaaGOmaaaaaOGaayjkaiaawMcaaaGaay5waiaaw2faaaGaayzFaa GaaGilaaaacaaIOaGaaGinaiaai6cacaaIYaGaaGOnaiaadggacaaI Paaaaa@C86D@

где

A=a1a2,a1=knn1+in23n/2Γn+11F21;3n2,3+n2;i4kn2,a2=Jnikn.

Комплексные усилия и моменты могут быть найдены по формулам:

T ˜ 1 = 1 ρ F ˜ ρ ; T ˜ 2 = 2 F ˜ ρ 2 ; M ˜ 1 =ic T ˜ 2 ν 2 T ˜ ¯ 1 ; M ˜ 2 =icδ T ˜ 1 ν 1 T ˜ ¯ 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaacaaeaacaWGubaacaGLdmaadaWgaaWcbaGaaGym aaqabaGccaaI9aGaeyOeI0YaaSaaaeaacaaIXaaabaGaeqyWdihaam aalaaabaGaeyOaIy7aaacaaeaacaWGgbaacaGLdmaaaeaacqGHciIT cqaHbpGCaaGaaG4oaiaaywW7daaiaaqaaiaadsfaaiaawoWaamaaBa aaleaacaaIYaaabeaakiaai2dacqGHsisldaWcaaqaaiabgkGi2oaa CaaaleqabaGaaGOmaaaakmaaGaaabaGaamOraaGaay5adaaabaGaey OaIyRaeqyWdi3aaWbaaSqabeaacaaIYaaaaaaakiaaiUdacaaMf8+a aacaaeaacaWGnbaacaGLdmaadaWgaaWcbaGaaGymaaqabaGccaaI9a GaamyAaiaadogadaqadaqaamaaGaaabaGaamivaaGaay5adaWaaSba aSqaaiaaikdaaeqaaOGaeyOeI0IaeqyVd42aaSbaaSqaaiaaikdaae qaaOWaa0aaaeaadaaiaaqaaiaadsfaaiaawoWaaaaadaWgaaWcbaGa aGymaaqabaaakiaawIcacaGLPaaacaaI7aGaaGzbVpaaGaaabaGaam ytaaGaay5adaWaaSbaaSqaaiaaikdaaeqaaOGaaGypaiaadMgacaWG JbGaeqiTdq2aaeWaaeaadaaiaaqaaiaadsfaaiaawoWaamaaBaaale aacaaIXaaabeaakiabgkHiTiabe27aUnaaBaaaleaacaaIXaaabeaa kmaanaaabaWaaacaaeaacaWGubaacaGLdmaaaaWaaSbaaSqaaiaaik daaeqaaaGccaGLOaGaayzkaaGaaGOlaaaa@7975@ (27)

Подставив в (27) представление для комплексной функции усилий, получим:

T ˜ 1 ρ = iP 2πcρ G b I ν bai i I ν i i ρa G ρ ; T ˜ 2 ρ = iP 2πc G b I ν bai i d I ν i i ρa dρ d G ρ dρ . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaqbaeqabiqaaaqaamaaGaaabaGaamivaaGaay5adaWa aSbaaSqaaiaaigdaaeqaaOWaaeWaaeaacqaHbpGCaiaawIcacaGLPa aacaaI9aGaeyOeI0YaaSaaaeaacaWGPbGaamiuaaqaaiaaikdacqaH apaCcaWGJbGaeqyWdihaamaabmaabaWaaSaaaeaaceWGhbGbaqbada qadaqaaiaadkgaaiaawIcacaGLPaaaaeaacaWGjbWaaSbaaSqaaiab e27aUbqabaGcdaqadaqaaiaadkgacaWGHbGaamyAamaakaaabaGaam yAaaWcbeaaaOGaayjkaiaawMcaaaaacaWGjbWaaSbaaSqaaiabe27a UbqabaGcdaqadaqaaiaadMgadaGcaaqaaiaadMgaaSqabaGccqaHbp GCcaWGHbaacaGLOaGaayzkaaGaeyOeI0Iabm4rayaauaWaaeWaaeaa cqaHbpGCaiaawIcacaGLPaaaaiaawIcacaGLPaaacaaI7aaabaWaaa caaeaacaWGubaacaGLdmaadaWgaaWcbaGaaGOmaaqabaGcdaqadaqa aiabeg8aYbGaayjkaiaawMcaaiaai2dacqGHsisldaWcaaqaaiaadM gacaWGqbaabaGaaGOmaiabec8aWjaadogaaaWaaeWaaeaadaWcaaqa aiqadEeagaafamaabmaabaGaamOyaaGaayjkaiaawMcaaaqaaiaadM eadaWgaaWcbaGaeqyVd4gabeaakmaabmaabaGaamOyaiaadggacaWG PbWaaOaaaeaacaWGPbaaleqaaaGccaGLOaGaayzkaaaaamaalaaaba GaamizaiaadMeadaWgaaWcbaGaeqyVd4gabeaakmaabmaabaGaamyA amaakaaabaGaamyAaaWcbeaakiabeg8aYjaadggaaiaawIcacaGLPa aaaeaacaWGKbGaeqyWdihaaiabgkHiTmaalaaabaGaamizaiqadEea gaafamaabmaabaGaeqyWdihacaGLOaGaayzkaaaabaGaamizaiabeg 8aYbaaaiaawIcacaGLPaaacaaIUaaaaaaa@9224@ (28)

Осуществив отделение действительной и мнимой частей, получим:

M 1 =Re ic T ˜ 2 ν 2 T ˜ ¯ 1 ; M 2 =Re icδ T ˜ 1 ν 1 T ˜ ¯ 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamytamaaBaaaleaacaaIXaaabeaakiaai2dacaqG sbGaaeyzamaabmaabaGaamyAaiaadogadaqadaqaamaaGaaabaGaam ivaaGaay5adaWaaSbaaSqaaiaaikdaaeqaaOGaeyOeI0IaeqyVd42a aSbaaSqaaiaaikdaaeqaaOWaa0aaaeaadaaiaaqaaiaadsfaaiaawo WaaaaadaWgaaWcbaGaaGymaaqabaaakiaawIcacaGLPaaaaiaawIca caGLPaaacaaI7aGaaGzbVlaad2eadaWgaaWcbaGaaGOmaaqabaGcca aI9aGaaeOuaiaabwgadaqadaqaaiaadMgacaWGJbGaeqiTdq2aaeWa aeaadaaiaaqaaiaadsfaaiaawoWaamaaBaaaleaacaaIXaaabeaaki abgkHiTiabe27aUnaaBaaaleaacaaIXaaabeaakmaanaaabaWaaaca aeaacaWGubaacaGLdmaaaaWaaSbaaSqaaiaaikdaaeqaaaGccaGLOa GaayzkaaaacaGLOaGaayzkaaGaaGOlaaaa@6093@ (29)

Введем в рассмотрение следующие безразмерные величины:

n= E 2 E 1 ; k n = k 1 ν 1 2 n n 4 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dadaWcaaqaaiaadweadaWgaaWcbaGa aGOmaaqabaaakeaacaWGfbWaaSbaaSqaaiaaigdaaeqaaaaakiaaiU dacaaMf8Uaam4AamaaBaaaleaacaWGUbaabeaakiaai2dadaGcaaqa aiaadUgaaSqabaGcdaGcbaqaamaabmaabaGaaGymaiabgkHiTiabe2 7aUnaaDaaaleaacaaIXaaabaGaaGOmaaaakiaad6gaaiaawIcacaGL PaaacaWGUbaaleaacaaI0aaaaOGaaGOlaaaa@4DA4@ (30)

Рассмотрим несколько композитных материалов (однонаправленные композиты на основе эпоксидной смолы) [14] с преобладающей жесткостью армирования волокон по радиусу:

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ углепластик (волокна AS);

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ стеклопластик (Е-волокна);

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ органопластик (кевлар-49);

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ углепластик (волокна IM6);

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ материал, по свойствам близкий к изотропному.

Механические характеристики приведенных материалов следующие:

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ n=0,064 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIWaGaaGilaiaaicdacaaI2aGa aGinaaaa@3D65@ , ν 1 =0,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaa icdacaaISaGaaG4maaaa@3DA0@ , ν 2 =0,019 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaOGaaGypaiaa icdacaaISaGaaGimaiaaigdacaaI5aaaaa@3F1C@ ;

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ n=0,235 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIWaGaaGilaiaaikdacaaIZaGa aGynaaaa@3D65@ , ν 1 =0,26 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaa icdacaaISaGaaGOmaiaaiAdaaaa@3E5F@ , ν 2 =0,061 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaOGaaGypaiaa icdacaaISaGaaGimaiaaiAdacaaIXaaaaa@3F19@ ;

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ n=0,072 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIWaGaaGilaiaaicdacaaI3aGa aGOmaaaa@3D64@ , ν 1 =0,33 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaa icdacaaISaGaaG4maiaaiodaaaa@3E5D@ , ν 2 =0,024 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaOGaaGypaiaa icdacaaISaGaaGimaiaaikdacaaI0aaaaa@3F18@ ;

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ n=0,056 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIWaGaaGilaiaaicdacaaI1aGa aGOnaaaa@3D66@ , ν 1 =0,32 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaa icdacaaISaGaaG4maiaaikdaaaa@3E5C@ , ν 2 =0,018 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaOGaaGypaiaa icdacaaISaGaaGimaiaaigdacaaI4aaaaa@3F1B@ ;

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ n=0,98 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIWaGaaGilaiaaiMdacaaI4aaa aa@3CB2@ , ν 1 =0,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaa icdacaaISaGaaG4maaaa@3DA0@ , ν 2 =0,294 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaOGaaGypaiaa icdacaaISaGaaGOmaiaaiMdacaaI0aaaaa@3F21@ .

Изменим направления армирования материалов. В этом случае необходимо заменить индексы 12 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaiabgsziRkaaikdaaaa@3B66@ .

В случае преобладающей жесткости армирования волокон по окружности получаем:

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ n=15,625 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIXaGaaGynaiaaiYcacaaI2aGa aGOmaiaaiwdaaaa@3E28@ , ν 1 =0,019 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaa icdacaaISaGaaGimaiaaigdacaaI5aaaaa@3F1B@ , ν 2 =0,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaOGaaGypaiaa icdacaaISaGaaG4maaaa@3DA1@ ;

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ n=4,258 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaI0aGaaGilaiaaikdacaaI1aGa aGioaaaa@3D6E@ , ν 1 =0,061 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaa icdacaaISaGaaGimaiaaiAdacaaIXaaaaa@3F18@ , ν 2 =0,26 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaOGaaGypaiaa icdacaaISaGaaGOmaiaaiAdaaaa@3E60@ ;

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ n=13,818 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIXaGaaG4maiaaiYcacaaI4aGa aGymaiaaiIdaaaa@3E2A@ , ν 1 =0,024 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaa icdacaaISaGaaGimaiaaikdacaaI0aaaaa@3F17@ , ν 2 =0,33 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaOGaaGypaiaa icdacaaISaGaaG4maiaaiodaaaa@3E5E@ ;

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ n=18,018 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIXaGaaGioaiaaiYcacaaIWaGa aGymaiaaiIdaaaa@3E27@ , ν 1 =0,018 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaa icdacaaISaGaaGimaiaaigdacaaI4aaaaa@3F1A@ , ν 2 =0,32 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaOGaaGypaiaa icdacaaISaGaaG4maiaaikdaaaa@3E5D@ ;

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFIaca aa@3C81@ n=1,02 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIXaGaaGilaiaaicdacaaIYaaa aa@3CA4@ , ν 1 =0,294 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaigdaaeqaaOGaaGypaiaa icdacaaISaGaaGOmaiaaiMdacaaI0aaaaa@3F20@ , ν 2 =0,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd42aaSbaaSqaaiaaikdaaeqaaOGaaGypaiaa icdacaaISaGaaG4maaaa@3DA1@ .

Исследуем распределения прогибов в пластинке (сферической оболочке с кривизной k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ ) в зависимости от преобладающей жесткости волокон композитных материалов. Начнем со случая преобладающей жесткости волокон по радиусу. В табл. 4.1 приведены относительные прогибы в полюсе сферической оболочки w ¯ max = w 0 E 1 h 3 P b 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaacaWG3baaamaaBaaaleaacaqGTbGaaeyy aiaabIhaaeqaaOGaaGypamaalaaabaGaam4DamaabmaabaGaaGimaa GaayjkaiaawMcaaiaadweadaWgaaWcbaGaaGymaaqabaGccaWGObWa aWbaaSqabeaacaaIZaaaaaGcbaGaamiuaiaadkgadaahaaWcbeqaai aaikdaaaaaaaaa@466C@ при k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ для рассматриваемых материалов, вычисленные по формуле (4.26a).

Теперь рассмотрим случай преобладающей жесткости армирования волокон по окружности. В табл. 4.2 приведены относительные прогибы в полюсе сферической оболочки при k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ для рассматриваемых материалов.

 

Таблица 4.1. Относительные прогибы в полюсе сферической оболочки при k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ для рассматриваемых материалов с преобладающей жесткостью армирования волокон по радиусу

Table 4.1. Relative deflections at the pole of spherical shell at k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ for considered materials with predominant hardness of fiber reinforcement along the radius

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaieaajugybabaaaaaaaaapiGaa8NfHaaa@39A6@ материала

n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaaaa@38F6@

w ¯ max MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeyOeI0Yaa0aaaeaacaWG3baaamaaBaaaleaacaqG TbGaaeyyaiaabIhaaeqaaaaa@3CF8@

w ¯ max MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeyOeI0Yaa0aaaeaacaWG3baaamaaBaaaleaacaqG TbGaaeyyaiaabIhaaeqaaaaa@3CF8@ изотропной пластинки

1

0,064 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIWaGaaGOnaiaaisdaaaa@3BAB@

0,8386 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaI4aGaaG4maiaaiIdacaaI2aaa aa@3C74@

n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIXaaaaa@3A78@

2

0,235 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaG4maiaaiwdaaaa@3BAB@

0,6163 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaI2aGaaGymaiaaiAdacaaIZaaa aa@3C6B@

w ¯ = 3 1 ν 2 4π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaacaWG3baaaiaai2dadaWcaaqaaiaaioda daqadaqaaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaa aakiaawIcacaGLPaaaaeaacaaI0aGaeqiWdahaaaaa@42FB@

при ν=0,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd4MaaGypaiaaicdacaaISaGaaG4maaaa@3CAF@

3

0,072 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIWaGaaG4naiaaikdaaaa@3BAA@

0,8238 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaI4aGaaGOmaiaaiodacaaI4aaa aa@3C70@

4

0,056 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIWaGaaGynaiaaiAdaaaa@3BAC@

0,8523 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaI4aGaaGynaiaaikdacaaIZaaa aa@3C6D@

5

0,98 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaI5aGaaGioaaaa@3AF8@

0,2221 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGOmaiaaikdacaaIXaaa aa@3C62@

0,2172 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGymaiaaiEdacaaIYaaa aa@3C67@

 

Таблица 4.2. Относительные прогибы в полюсе сферической оболочки при k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ для рассматриваемых материалов с преобладающей жесткостью армирования волокон по окружности

Table 4.2. Relative deflections at the pole of a spherical shell at k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ for the considered materials with a dominant stiffness fiber reinforcement along the radius

MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaieaajugybabaaaaaaaaapiGaa8NfHaaa@39A6@ материала

n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaaaa@38F6@

w ¯ max MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeyOeI0Yaa0aaaeaacaWG3baaamaaBaaaleaacaqG TbGaaeyyaiaabIhaaeqaaaaa@3CF8@

w ¯ max MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeyOeI0Yaa0aaaeaacaWG3baaamaaBaaaleaacaqG TbGaaeyyaiaabIhaaeqaaaaa@3CF8@ изотропной пластинки

1

15,6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaiaaiwdacaaISaGaaGOnaaaa@3AF3@

0,003435 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIWaGaaGimaiaaiodacaaI0aGa aG4maiaaiwdaaaa@3DDE@

w ¯ = 3 1 ν 2 4π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaacaWG3baaaiaai2dadaWcaaqaaiaaioda daqadaqaaiaaigdacqGHsislcqaH9oGBdaahaaWcbeqaaiaaikdaaa aakiaawIcacaGLPaaaaeaacaaI0aGaeqiWdahaaaaa@42FB@

при ν=0,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyVd4MaaGypaiaaicdacaaISaGaaG4maaaa@3CAF@

2

4,3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGinaiaaiYcacaaIZaaaaa@3A34@

0,034000 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIWaGaaG4maiaaisdacaaIWaGa aGimaiaaicdaaaa@3DD6@

3

13,8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaiaaiodacaaISaGaaGioaaaa@3AF3@

0,004315 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIWaGaaGimaiaaisdacaaIZaGa aGymaiaaiwdaaaa@3DDC@

4

18,02 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaiaaiIdacaaISaGaaGimaiaaikdaaaa@3BAC@

0,002625 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIWaGaaGimaiaaikdacaaI2aGa aGOmaiaaiwdaaaa@3DDE@

5

1,02 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaiaaiYcacaaIWaGaaGOmaaaa@3AEA@

0,213300 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGymaiaaiodacaaIZaGa aGimaiaaicdaaaa@3DD8@

0,2172 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGymaiaaiEdacaaIYaaa aa@3C67@

 

На рис. 4.2 пунктирной линией показана кривая распределения прогиба для материала, близкого к изотропному (материал MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 5), а штрих-пунктирной MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2. Из рис. 2 следует, что для случая преобладающей жесткости армирования волокон, направленных по радиусу, наибольшую жесткость обеспечивает изотропный материал, а в случае криволинейной ортотропии MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ материал с максимальным n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaaaa@38F6@ , то есть материал MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2.

На рис. 3 пунктирной линией показана кривая распределения прогиба для материала, близкого к изотропному (материал MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 5), а непрерывная кривая с точками MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 4. Из рис. 3 следует, что для случая преобладающей жесткости волокон, направленных по окружности, наибольшую жесткость обеспечивает криволинейно-ортотропный материал с максимальным n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaaaa@38F6@ , то есть материал MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 4.

В табл. 4.3 приведены результаты для оболочки при k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgcMi5kaaicdaaaa@3B74@ , вычисленные по формуле (4.26а) из материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 5, близкого к изотропному, с преобладающей жесткостью армирования по радиусу в сравнении с результатами [15].

В таблице 4.4 приведены результаты для оболочки из материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 5, близкого к изотропному, с преобладающей жесткостью армирования по окружности в сравнении с результатами [15].

Сравнение результатов в табл. 4.3 и 4.4 свидетельствует о достоверности формулы (4.26а).

На рис. 4 приведены графики распределения прогибов при k=10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4Aaiaai2dacaaIXaGaaGimaaaa@3B2F@ для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2 при изменении направления армирования волокон. Непрерывная линия соответствует преобладающему армированию по радиусу, а пунктирная линия MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ по окружности.

Как и следовало ожидать, шпангоутное армирование улучшает жесткостные свойства конструкции в сравнении со стрингерным армированием.

На рис. 5 показано изменение максимального прогиба при смене направления армирования волокон для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2 в зависимости от кривизны. Непрерывная линия соответствует преобладающему армированию по радиусу, а пунктирная линия MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ по окружности. Видно, что в случае армирования по радиусу линия на рис. 5 является существенно нелинейной.

 

Рисунок 4.2. Распределение относительного прогиба в полюсе сферической оболочки при k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ для рассматриваемых материалов с преобладающей жесткостью армирования волокон по радиусу 

Fig. 4.2. Relative deflection distribution in the pole of a spherical shell as k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ for viewed materials with a predominant hardness of fiber reinforcement along the radius

 

Рисунок 4.3. Распределение относительного прогиба в полюсе сферической оболочки при k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ для рассматриваемых материалов с преобладающей жесткостью армирования волокон по окружности 

Fig. 4.3. Relative deflection distribution in the pole of a spherical shell as k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgkziUkaaicdaaaa@3B9A@ for viewed materials with a predominant hardness of fiber reinforcement around the circumference

 

Таблица 4.3. Прогибы в полюсе сферической оболочки при k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgcMi5kaaicdaaaa@3B74@ для рассматриваемых материалов с преобладающей жесткостью армирования волокон по радиусу

Table 4.3. Deflections at the pole of a spherical shell at k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgcMi5kaaicdaaaa@3B74@ for the considered materials with predominant stiffness of fiber reinforcement along the radius

k= b 2 Rh MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4Aaiaai2dadaWcaaqaaiaadkgadaahaaWcbeqa aiaaikdaaaaakeaacaWGsbGaamiAaaaaaaa@3D68@

1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaaaa@38BE@

2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGOmaaaa@38BF@

3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaG4maaaa@38C0@

4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGinaaaa@38C1@

5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGynaaaa@38C2@

6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGOnaaaa@38C3@

7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaG4naaaa@38C4@

8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGioaaaa@38C5@

9 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGyoaaaa@38C6@

10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaiaaicdaaaa@3978@

P ¯ = P b 2 E 1 h 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaacaWGqbaaaiaai2dadaWcaaqaaiaadcfa caWGIbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamyramaaBaaaleaaca aIXaaabeaakiaadIgadaahaaWcbeqaaiaaisdaaaaaaaaa@4002@

0,375π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIZaGaaG4naiaaiwdacqaHapaC aaa@3D6D@

0,75π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaI3aGaaGynaiabec8aWbaa@3CB0@

По предложенной методике при n=0,98 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIWaGaaGilaiaaiMdacaaI4aaa aa@3CB2@

0,250 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGynaiaaicdaaaa@3BA8@

0,221 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGOmaiaaigdaaaa@3BA6@

0,187 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGioaiaaiEdaaaa@3BB1@

0,155 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGynaiaaiwdaaaa@3BAC@

0,128 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGOmaiaaiIdaaaa@3BAC@

0,214 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGymaiaaisdaaaa@3BA8@

0,182 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGioaiaaikdaaaa@3BAC@

0,156 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGynaiaaiAdaaaa@3BAD@

0,137 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaG4maiaaiEdaaaa@3BAC@

0,121 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGOmaiaaigdaaaa@3BA5@

Данные из [15] при n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIXaaaaa@3A78@

0,249 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGinaiaaiMdaaaa@3BB0@

0,228 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGOmaiaaiIdaaaa@3BAD@

0,194 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGyoaiaaisdaaaa@3BAF@

0,160 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGOnaiaaicdaaaa@3BA8@

0,131 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaG4maiaaigdaaaa@3BA6@

0,227 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGOmaiaaiEdaaaa@3BAC@

0,188 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGioaiaaiIdaaaa@3BB2@

0,160 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGOnaiaaicdaaaa@3BA8@

0,138 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaG4maiaaiIdaaaa@3BAD@

0,121 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGOmaiaaigdaaaa@3BA5@

 

Таблица 4.4. Прогибы в полюсе сферической оболочки при k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgcMi5kaaicdaaaa@3B74@ для рассматриваемых материалов с преобладающей жесткостью армирования волокон по окружности 

Table 4.4. Deflections at the pole of a spherical shell at k0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4AaiabgcMi5kaaicdaaaa@3B74@ for the considered materials with predominant stiffness of fiber reinforcement around the circumference

k= b 2 Rh MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4Aaiaai2dadaWcaaqaaiaadkgadaahaaWcbeqa aiaaikdaaaaakeaacaWGsbGaamiAaaaaaaa@3D68@

1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaaaa@38BE@

2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGOmaaaa@38BF@

3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaG4maaaa@38C0@

4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGinaaaa@38C1@

5 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGynaaaa@38C2@

6 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGOnaaaa@38C3@

7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaG4naaaa@38C4@

8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGioaaaa@38C5@

9 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGyoaaaa@38C6@

10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGymaiaaicdaaaa@3978@

P ¯ = P b 2 E 1 h 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaacaWGqbaaaiaai2dadaWcaaqaaiaadcfa caWGIbWaaWbaaSqabeaacaaIYaaaaaGcbaGaamyramaaBaaaleaaca aIXaaabeaakiaadIgadaahaaWcbeqaaiaaisdaaaaaaaaa@4002@

0,375π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIZaGaaG4naiaaiwdacqaHapaC aaa@3D6D@

0,75π MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaI3aGaaGynaiabec8aWbaa@3CB0@

По предложенной методике при n=1,02 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIXaGaaGilaiaaicdacaaIYaaa aa@3CA4@

0,240 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGinaiaaicdaaaa@3BA7@

0,213 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGymaiaaiodaaaa@3BA7@

0,180 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGioaiaaicdaaaa@3BAA@

0,150 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGynaiaaicdaaaa@3BA7@

0,124 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGOmaiaaisdaaaa@3BA8@

0,208 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGimaiaaiIdaaaa@3BAB@

0,177 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaG4naiaaiEdaaaa@3BB0@

0,152 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGynaiaaikdaaaa@3BA9@

0,133 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaG4maiaaiodaaaa@3BA8@

0,118 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGymaiaaiIdaaaa@3BAB@

Данные из [15] при n=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaai2dacaaIXaaaaa@3A78@

0,249 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGinaiaaiMdaaaa@3BB0@

0,228 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGOmaiaaiIdaaaa@3BAD@

0,194 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGyoaiaaisdaaaa@3BAF@

0,160 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGOnaiaaicdaaaa@3BA8@

0,131 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaG4maiaaigdaaaa@3BA6@

0,227 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIYaGaaGOmaiaaiEdaaaa@3BAC@

0,188 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGioaiaaiIdaaaa@3BB2@

0,160 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGOnaiaaicdaaaa@3BA8@

0,138 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaG4maiaaiIdaaaa@3BAD@

0,121 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGimaiaaiYcacaaIXaGaaGOmaiaaigdaaaa@3BA5@

 

Рисунок 4.4. Распределение относительных прогибов при k=10 для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2 при изменении направления армирования волокон 

Fig. 4.4. Relative deflection distribution at k=10 for material No. 2 when changing the fiber reinforcement boards

 

Рисунок 4.5. Изменение максимального относительного прогиба при смене направления армирования волокон для материала №2 в зависимости от кривизны

Fig. 4.5. Change in the maximum relative deflection when changing the direction of fiber reinforcement for material No. 2 depending on the curvature

 

Рисунок 4.6. Эпюры приведенных усилий в радиальном и окружном направлениях при k=10 для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2 (с преобладающей жесткостью армирования по окружности)

Fig. 4.6. Diagrams of reduced forces in the radial and circumferential directions at k=10 for material No. 2 (with the prevailing stiffness of the reinforcement along the circumference)

 

Рисунок 4.7. Эпюры приведенных моментов в радиальном и окружном направлениях при k=10 для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2 (с преобладающей жесткостью армирования по окружности)

Fig. 4.7. Diagrams of the reduced moments in the radial and circumferential directions at k=10 for material No. 2 (with the prevailing stiffness of the reinforcement along the circumference)

 

Введем в рассмотрение безразмерные усилия и моменты

T ¯ i = 2πc n 2 1 T i P ; M ¯ i = 2π n 2 1 M i P ;i=1,2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaa0aaaeaacaWGubaaamaaBaaaleaacaWGPbaabeaa kiaai2dadaWcaaqaaiaaikdacqaHapaCcaWGJbWaaeWaaeaacaWGUb WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaaGaayjkaiaawMca aiaadsfadaWgaaWcbaGaamyAaaqabaaakeaacaWGqbaaaiaaiUdaca aMf8+aa0aaaeaacaWGnbaaamaaBaaaleaacaWGPbaabeaakiaai2da daWcaaqaaiaaikdacqaHapaCdaqadaqaaiaad6gadaahaaWcbeqaai aaikdaaaGccqGHsislcaaIXaaacaGLOaGaayzkaaGaamytamaaBaaa leaacaWGPbaabeaaaOqaaiaadcfaaaGaaG4oaiaaywW7caWGPbGaaG ypaiaaigdacaaISaGaaGOmaiaai6caaaa@5CAB@

Для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2 (с преобладающей жесткостью армирования по окружности) на рис. 6 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ 7 построены эпюры усилий и моментов в радиальном и окружном направлениях при k=10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4Aaiaai2dacaaIXaGaaGimaaaa@3B2F@ .

На рис. 8 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ 9 для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2 (с преобладающей жесткостью армирования по радиусу) построены эпюры усилий и моментов в радиальном и окружном направлениях при k=10 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4Aaiaai2dacaaIXaGaaGimaaaa@3B2F@ .

 

Рисунок 4.8. Эпюры приведенных усилий в радиальном и окружном направлениях при k=10 для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2 (с преобладающей жесткостью армирования по радиусу)

Fig. 4.8. Diagrams of reduced forces in the radial and circumferential directions at k=10 for material No. 2 (with the prevailing stiffness of the reinforcement along the radius)

 

Рисунок 4.9. Эпюры приведенных моментов в радиальном и окружном направлениях при k=10 для материала MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFweca aa@3C76@ 2 (с преобладающей жесткостью армирования по радиусу)

Fig. 4.9. Diagrams of the reduced moments in the radial and circumferential directions at k=10 for material No. 2 (with the prevailing stiffness of the reinforcement along the radius)

 

Из рис. 6 MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFtaca aa@3C72@ 9 следует, что в оболочке с преобладающими жесткостными свойствами в меридиональном направлении над жесткостными свойствами в окружном направлении в полюсе наблюдается концентрация напряжений и величина их не ограничена; в обратном случае в окрестности приложенной нагрузки оболочка ведет себя как круглая криволинейно-ортотропная пластина, находящаяся в условиях чистого изгиба, причем <<кольца жесткости>>, которыми обладает в этом случае оболочка, полностью гасят краевой эффект, не давая ему распространяться до полюса.

Выводы

В статье было продолжено исследование методики использования комплексного представления уравнений общей теории ортотропных оболочек, которая позволила в комплексной форме существенно сократить число неизвестных функций и порядок системы дифференциальных уравнений, даже несмотря на появление комплексно-сопряженных неизвестных функций. Несмотря на это, предложенная методика позволила более компактно представить уравнения, а в некоторых случаях появилась возможность даже вычислить комплексно-сопряженную функцию. В случае осесимметричной деформации эта функция обращается в нуль, а в других случаях влиянием комплексно-сопряженной функции можно пренебречь, поэтому для указанных случаев были исследованы пологие ортотропные сферические оболочки вращения под действием кольцевой нагрузки в условиях различного преобладания жесткости армирования волокон. В предельном случае были получены результаты и для изотропной оболочки.

×

About the authors

Peter G. Velikanov

Kazan (Volga Region) Federal University; Kazan National Research Technical University named after A.N.Tupolev-KAI

Email: pvelikanov@mail.ru
ORCID iD: 0000-0003-0845-2880

Candidate of Physical and Mathematical Sciences, Assistant Professor of the Department of Theoretical Mechanics; Assistant Professor of the Department of Jet Engines and Power Plants

Russian Federation, Kazan; Kazan

Yuri P. Artyukhin

Kazan (Volga Region) Federal University

Author for correspondence.
Email: ArtukhinYP@mail.ru
ORCID iD: 0000-0002-6243-9145

Doctor of Physical and Mathematical Sciences, Professor of the Department of Theoretical Mechanics

Russian Federation, Kazan

References

  1. Novozhilov V.V. Theory of thin shells. Moscow: Sudpromgiz, 1962, 431 p. Available at: https://libcats.org/book/661745. (In Russ.)
  2. Artyukhin Yu.P. Calculation of single-layer and multilayer orthotropic shells for local loads. Issledovaniya po Teorii Plastin i Obolochek, 1966, issue 4, pp. 91–110. Available at: https://www.mathnet.ru/rus/kutpo593. (In Russ.)
  3. Artyukhin Y.P., Velikanov P.G. Effect of local loads on orthotropic spherical and conical shells of rotation. Analytical mechanics, stability and motion control: materials of the all-Russian seminar. Kazan: Izd-vo KGU, 2008, pp. 22–23. Available at: https://repository.kpfu.ru/?p_id=9408#. (In Russ.)
  4. Ambartsumyan S.A. General theory of anisotropic shells. Moscow: Fizmatgiz, 1961, 384 p. Available at: https://libcats.org/book/438699. (In Russ.)
  5. Artyukhin Y.P., Guryanov N.G., Kotlyar L.M. Mathematics 4.0 system and its applications in mechanics: textbook. Kazan: Kazanskoe matematicheskoe obshchestvo. Izd-vo KamPI, 2002, 415 p. Available at: https://repository.kpfu.ru/?p_id=53958. (In Russ.)
  6. Velikanov P.G. Fundamentals of work in the Mathematica system: laboratory course. Kazan: Izd-vo Kazanskogo gos. tekhn. un-ta, 2010, 40 p. Available at: https://elibs.kai.ru/_docs_file/806166/HTML/. (In Russ.)
  7. Artyukhin Yu.P. Bending of shallow orthotropic shells of revolution by a force applied at the pole. Issledovaniya po Teorii Plastin i Obolochek, 1966, issue 5, pp. 152–160. Available at: https://www.mathnet.ru/rus/kutpo542. (In Russ.)
  8. Bateman H., Erdelyi A. Higher Transcedental Functions. Volume 2. Moscow: Nauka, 1974, 295 p. Available at: https://ikfia.ysn.ru/wp-content/uploads/2018/01/BejtmenErdeji_t2_1966ru.pdf. (In Russ.)
  9. Watson G.N. A Treatise on the Theory of Bessel Functions. Part 1. Moscow: Inostr. lit-ra, 1949, 779 p. Available at: http://ega-math.narod.ru/Books/Watson.htm. (In Russ.)
  10. Sneddon I. Fourier transforms. Moscow: Inostr. lit-ra, 1955, 668 p. Available at: https://libcats.org/book/579038. (In Russ.)
  11. Gradstein I.S., Ryzhik I.M. Tables of integrals, sums of series and products. Moscow: Nauka, 1971, 1108 p. Available at: http://www.vixri.ru/?p=991. (In Russ.)
  12. Guryanov N.G., Tyuleneva O.N. Orthotropic plates and flat shells. Theory, methods of solving boundary value problems. Kazan: KGU, 2002, 112 p. (In Russ.)
  13. Lekhnitsky S.G. Anisotropic plates. Moscow: OGIZ-Gostekhizdat, 1947, 355 p. Available at: https://lib-bkm.ru/12625. (In Russ.)
  14. Matthews F., Rollings R. Composite Materials. Mechanics and Technology. Moscow: Tekhnosfera, 2004, 408 p. Available at: https://knigogid.ru/books/752928-kompozitnye-materialy-mehanika-i-tehnologiya. (In Russ.)
  15. Kornishin M.S., Isanbayeva F.S. Flexible plates and panels. Moscow: Nauka, 1968, 260 p. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 4.1. Spherical shell under the action of concentrated annular load

Download (58KB)
3. Fig. 4.2. Relative deflection distribution in the pole of a spherical shell as for viewed materials with a predominant hardness of fiber reinforcement along the radius

Download (73KB)
4. Fig. 4.3. Relative deflection distribution in the pole of a spherical shell as for viewed materials with a predominant hardness of fiber reinforcement around the circumference

Download (65KB)
5. Fig. 4.4. Relative deflection distribution at for material No. 2 when changing the fiber reinforcement boards

Download (59KB)
6. Fig. 4.5. Change in the maximum relative deflection when changing the direction of fiber reinforcement for material No. 2 depending on the curvature

Download (85KB)
7. Fig. 4.6. Diagrams of reduced forces in the radial and circumferential directions at for material No. 2 (with the prevailing stiffness of the reinforcement along the circumference)

Download (73KB)
8. Fig. 4.7. Diagrams of the reduced moments in the radial and circumferential directions at for material No. 2 (with the prevailing stiffness of the reinforcement along the circumference)

Download (81KB)
9. Fig. 4.8. Diagrams of reduced forces in the radial and circumferential directions at for material No. 2 (with the prevailing stiffness of the reinforcement along the radius)

Download (68KB)
10. Fig. 4.9. Diagrams of the reduced moments in the radial and circumferential directions at for material No. 2 (with the prevailing stiffness of the reinforcement along the radius)

Download (69KB)

Copyright (c) 2022 Velikanov P.G., Artyukhin Y.P.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies