On group characterization by numbers of conjugate classes

Cover Page


Cite item

Full Text

Abstract

Let c(n,G) be a number of conjugate elements of order n in a group G. In the article we study the problem of recognition of finite group by the set ncl(G) that consists of numbers c(n,G). We prove that Abelian groups can be recognized by the set ncl(G) when the order of the group is known. We also describe some other types of groups that can be recognized. The examples of non-isomorphic groups with the same sets ncl(G) are given. Some theorems about a group recognition by partial conditions on c(n,G). are proved.

Full Text

1. Постановка задачи

Основные понятия и цитируемые факты можно найти в [1; 2; 6; 8; 11].

В современных исследованиях по теории групп актуальными являются проблемы распознавания групп по некоторым условиям. Здесь возможны разные подходы. В исследованиях математиков В.Д. Мазурова, Д.О. Ревина, М.А. Гречкосеевой и других исследуется проблема распознавания группы по ее спектру-множеству ω(G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeqyYdCNaaGikaiaadEeacaaIPaaaaa@3C01@ порядков ее элементов [4; 8; 9]. В работах И.Б. Горшкова, Н.В. Масловой исследуется распознавание по графу Грюнберга MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ Кегеля [5]. В работе В.В. Паньшина изучается распознавание групп по множеству размеров классов сопряженности [10].

В этой статье мы расскажем о распознавании еще по по одному множеству. Эти исследования начаты в работе автора [3]. Пусть G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raaaa@38CF@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ конечная группа, c(n,G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGUbGaaGilaiaadEeacaaIPaaa aa@3CC5@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ количество классов сопряженных элементов, на которые распределяются элементы порядка n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaaaa@38F6@ в группе G. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raiaai6caaaa@3987@ Если в группе нет элементов порядка n, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaaiYcaaaa@39AC@ то c(n,G)=0. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGUbGaaGilaiaadEeacaaIPaGa aGypaiaaicdacaaIUaaaaa@3EFE@ Мы расскажем об исследованиях проблемы распознавания по множеству {c(n,G)}, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaG4EaiaadogacaaIOaGaamOBaiaaiYcacaWGhbGa aGykaiaai2hacaaISaaaaa@3F87@ которое для краткости обозначим через ncl(G). MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaadogacaWGSbGaaGikaiaadEeacaaIPaGa aGOlaaaa@3DB8@ Если группы распознаваемы по спектру, то они распознаются и по множеству ncl(G), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaadogacaWGSbGaaGikaiaadEeacaaIPaGa aGilaaaa@3DB6@ однако групп, распознаваемых по множеству ncl(G), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaadogacaWGSbGaaGikaiaadEeacaaIPaGa aGilaaaa@3DB6@ больше. В ряде случаев для распознавания группы нет необходимости указывать все это множество и даже предварительно указывать порядок группы.

Число c(1,G)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaIXaGaaGilaiaadEeacaaIPaGa aGypaiaaigdaaaa@3E0F@ всегда. Мы это значение далее указывать не будем.

Выделяются три основных вопроса:

1. Когда группа G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raaaa@38CF@ определяется множеством ncl(G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaadogacaWGSbGaaGikaiaadEeacaaIPaaa aa@3D00@ однозначно?

2. Какие группы имеют одни и те же множества ncl(G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaadogacaWGSbGaaGikaiaadEeacaaIPaaa aa@3D00@ ?

3. Какие группы можно определить частичными условиями на числа c(n,G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGUbGaaGilaiaadEeacaaIPaaa aa@3CC5@ ?

Теорема 7.3. цитируется по книге [2]. Остальные теоремы статьи являются новыми.

2. Абелевы группы 

Лемма 2.1.

nN c(n,G)=|G| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaabeaeqaleaacaWGUbGaeyicI4SaamOtaaqab0Ga eyyeIuoakiaadogacaaIOaGaamOBaiaaiYcacaWGhbGaaGykaiaai2 dacaaI8bGaam4raiaaiYhaaaa@459C@ в том и только том случае, когда G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raaaa@38CF@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ абелева группа.

Доказательство.

Это легко следует из того факта, что | g G |=1 gGG MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiFaiaadEgadaahaaWcbeqaaiaadEeaaaGccaaI 8bGaaGypaiaaigdacaaIGaGaaGiiaiabgcGiIiaadEgacqGHiiIZca WGhbGaeyi1HSTaam4raaaa@4608@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ абелева группа.

Теорема 2.2.

Абелева группа однозначно распознается по множеству ncl(G), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaadogacaWGSbGaaGikaiaadEeacaaIPaGa aGilaaaa@3DB6@ если указан ее порядок.

Доказательство.

Сначала мы проверим выполнение условие леммы 2.1, а затем достаточно показать, что однозначно определяется силовская p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaaaa@38F8@ -подгруппа для каждого простого числа p. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaiaai6caaaa@39B0@

G Z p ×...× Z p m 1 × Z p 2 ×...× Z p 2 m 2 ...× Z p s ×...× Z p s m s , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raiabgwKianaayaaabaGaamOwamaaBaaaleaa caWGWbaabeaakiabgEna0kaai6cacaaIUaGaaGOlaiabgEna0kaadQ fadaWgaaWcbaGaamiCaaqabaaabaGaamyBamaaBaaabaGaaGymaaqa baaacaGL44pakiabgEna0oaayaaabaGaamOwamaaBaaaleaacaWGWb WaaWbaaeqabaGaaGOmaaaaaeqaaOGaey41aqRaaGOlaiaai6cacaaI UaGaey41aqRaamOwamaaBaaaleaacaWGWbWaaWbaaeqabaGaaGOmaa aaaeqaaaqaaiaad2gadaWgaaqaaiaaikdaaeqaaaGaayjo+dGccaaI UaGaaGOlaiaai6cacqGHxdaTdaagaaqaaiaadQfadaWgaaWcbaGaam iCamaaCaaabeqaaiaadohaaaaabeaakiabgEna0kaai6cacaaIUaGa aGOlaiabgEna0kaadQfadaWgaaWcbaGaamiCamaaCaaabeqaaiaado haaaaabeaaaeaacaWGTbWaaSbaaeaacaWGZbaabeaaaiaawIJ=aOGa aGilaaaa@6FA5@

m k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyBamaaBaaaleaacaWGRbaabeaaaaa@3A11@ могут быть равны 0.

Тогда

c(p,G)= p m 1 +...+ m s 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbGaaGilaiaadEeacaaIPaGa aGypaiaadchadaahaaWcbeqaaiaad2gadaWgaaqaaiaaigdaaeqaai abgUcaRiaai6cacaaIUaGaaGOlaiabgUcaRiaad2gadaWgaaqaaiaa dohaaeqaaaaakiabgkHiTiaaigdacaaISaaaaa@48DD@

c( p 2 ,G)= p m 1 +2 m 2 +2 m 3 +...+2 m s c(p,G)1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaaIYaaa aOGaaGilaiaadEeacaaIPaGaaGypaiaadchadaahaaWcbeqaaiaad2 gadaWgaaqaaiaaigdaaeqaaiabgUcaRiaaikdacaWGTbWaaSbaaeaa caaIYaaabeaacqGHRaWkcaaIYaGaamyBamaaBaaabaGaaG4maaqaba Gaey4kaSIaaGOlaiaai6cacaaIUaGaey4kaSIaaGOmaiaad2gadaWg aaqaaiaadohaaeqaaaaakiabgkHiTiaadogacaaIOaGaamiCaiaaiY cacaWGhbGaaGykaiabgkHiTiaaigdacaaISaaaaa@5718@

c( p 3 ,G)= p m 1 +2 m 2 +3 m 3 +...+3 m s c( p 2 ,G)c(p,G)1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaaIZaaa aOGaaGilaiaadEeacaaIPaGaaGypaiaadchadaahaaWcbeqaaiaad2 gadaWgaaqaaiaaigdaaeqaaiabgUcaRiaaikdacaWGTbWaaSbaaeaa caaIYaaabeaacqGHRaWkcaaIZaGaamyBamaaBaaabaGaaG4maaqaba Gaey4kaSIaaGOlaiaai6cacaaIUaGaey4kaSIaaG4maiaad2gadaWg aaqaaiaadohaaeqaaaaakiabgkHiTiaadogacaaIOaGaamiCamaaCa aaleqabaGaaGOmaaaakiaaiYcacaWGhbGaaGykaiabgkHiTiaadoga caaIOaGaamiCaiaaiYcacaWGhbGaaGykaiabgkHiTiaaigdacaaISa aaaa@5DBF@

MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeSO7I0eaaa@39F1@

c( p k ,G)= p m 1 +2 m 2 ++(k1) m 3 +k m 3 ++k m s c( p k1 ,G)c( p k2 ,G)1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaWGRbaa aOGaaGilaiaadEeacaaIPaGaaGypaiaadchadaahaaWcbeqaaiaad2 gadaWgaaqaaiaaigdaaeqaaiabgUcaRiaaikdacaWGTbWaaSbaaeaa caaIYaaabeaacqGHRaWkcqWIMaYscqGHRaWkcaaIOaGaam4Aaiabgk HiTiaaigdacaaIPaGaamyBamaaBaaabaGaaG4maaqabaGaey4kaSIa am4Aaiaad2gadaWgaaqaaiaaiodaaeqaaiabgUcaRiablAciljabgU caRiaadUgacaWGTbWaaSbaaeaacaWGZbaabeaaaaGccqGHsislcaWG JbGaaGikaiaadchadaahaaWcbeqaaiaadUgacqGHsislcaaIXaaaaO GaaGilaiaadEeacaaIPaGaeyOeI0Iaam4yaiaaiIcacaWGWbWaaWba aSqabeaacaWGRbGaeyOeI0IaaGOmaaaakiaaiYcacaWGhbGaaGykai abgkHiTiablAciljabgkHiTiaaigdacaaISaaaaa@6CC0@

c( p s ,G)= p m 1 +2 m 2 ++s m s c( p s1 ,G)c( p s2 ,G)1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaWGZbaa aOGaaGilaiaadEeacaaIPaGaaGypaiaadchadaahaaWcbeqaaiaad2 gadaWgaaqaaiaaigdaaeqaaiabgUcaRiaaikdacaWGTbWaaSbaaeaa caaIYaaabeaacqGHRaWkcqWIMaYscqGHRaWkcaWGZbGaamyBamaaBa aabaGaam4CaaqabaaaaOGaeyOeI0Iaam4yaiaaiIcacaWGWbWaaWba aSqabeaacaWGZbGaeyOeI0IaaGymaaaakiaaiYcacaWGhbGaaGykai abgkHiTiaadogacaaIOaGaamiCamaaCaaaleqabaGaam4CaiabgkHi TiaaikdaaaGccaaISaGaam4raiaaiMcacqGHsislcqWIMaYscqGHsi slcaaIXaGaaGOlaaaa@608D@

Отсюда получаем 

m 1 ++ m s =lo g p c(p,G)+1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyBamaaBaaaleaacaaIXaaabeaakiabgUcaRiab lAciljabgUcaRiaad2gadaWgaaWcbaGaam4CaaqabaGccaaI9aGaam iBaiaad+gacaWGNbWaaSbaaSqaaiaadchaaeqaaOGaam4yaiaaiIca caWGWbGaaGilaiaadEeacaaIPaGaey4kaSIaaGymaiaaiYcaaaa@4AC6@

m 1 +2 m 2 +2 m s =lo g p c( p 2 ,G)+lo g p c(p,G)+1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa ikdacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaeSOjGSKaey4kaSIaaG Omaiaad2gadaWgaaWcbaGaam4CaaqabaGccaaI9aGaamiBaiaad+ga caWGNbWaaSbaaSqaaiaadchaaeqaaOGaam4yaiaaiIcacaWGWbWaaW baaSqabeaacaaIYaaaaOGaaGilaiaadEeacaaIPaGaey4kaSIaamiB aiaad+gacaWGNbWaaSbaaSqaaiaadchaaeqaaOGaam4yaiaaiIcaca WGWbGaaGilaiaadEeacaaIPaGaey4kaSIaaGymaiaaiYcaaaa@58B7@

MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaeSO7I0eaaa@39F1@

m 1 +2 m 2 +3 m 3 +3 m s =lo g p c( p 3 ,G)+lo g p c( p 2 ,G)+lo g p c(p,G)+1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa ikdacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaaG4maiaad2 gadaWgaaWcbaGaaG4maaqabaGccqWIMaYscqGHRaWkcaaIZaGaamyB amaaBaaaleaacaWGZbaabeaakiaai2dacaWGSbGaam4BaiaadEgada WgaaWcbaGaamiCaaqabaGccaWGJbGaaGikaiaadchadaahaaWcbeqa aiaaiodaaaGccaaISaGaam4raiaaiMcacqGHRaWkcaWGSbGaam4Bai aadEgadaWgaaWcbaGaamiCaaqabaGccaWGJbGaaGikaiaadchadaah aaWcbeqaaiaaikdaaaGccaaISaGaam4raiaaiMcacqGHRaWkcaWGSb Gaam4BaiaadEgadaWgaaWcbaGaamiCaaqabaGccaWGJbGaaGikaiaa dchacaaISaGaam4raiaaiMcacqGHRaWkcaaIXaGaaGilaaaa@66D2@

m 1 +2 m 2 ++s m s =lo g p c( p s ,G)+lo g p c( p s1 ,G)++lo g p c(p,G)+1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyBamaaBaaaleaacaaIXaaabeaakiabgUcaRiaa ikdacaWGTbWaaSbaaSqaaiaaikdaaeqaaOGaey4kaSIaeSOjGSKaey 4kaSIaam4Caiaad2gadaWgaaWcbaGaam4CaaqabaGccaaI9aGaamiB aiaad+gacaWGNbWaaSbaaSqaaiaadchaaeqaaOGaam4yaiaaiIcaca WGWbWaaWbaaSqabeaacaWGZbaaaOGaaGilaiaadEeacaaIPaGaey4k aSIaamiBaiaad+gacaWGNbWaaSbaaSqaaiaadchaaeqaaOGaam4yai aaiIcacaWGWbWaaWbaaSqabeaacaWGZbGaeyOeI0IaaGymaaaakiaa iYcacaWGhbGaaGykaiabgUcaRiablAciljabgUcaRiaadYgacaWGVb Gaam4zamaaBaaaleaacaWGWbaabeaakiaadogacaaIOaGaamiCaiaa iYcacaWGhbGaaGykaiabgUcaRiaaigdacaaISaaaaa@688E@

m k MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyBamaaBaaaleaacaWGRbaabeaaaaa@3A11@ находятся однозначно. 

3. Группы порядков 8, p, p 2 , pq, p 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiiaiaadchacaaISaGaaGiiaiaadchadaahaaWc beqaaiaaikdaaaGccaaISaGaaGiiaiaadchacaWGXbGaaGilaiaaic cacaWGWbWaaWbaaSqabeaacaaIZaaaaaaa@4374@

Здесь p, q MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaiaaiYcacaaIGaGaamyCaaaa@3B4E@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ различные нечетные простые числа.

Теорема 3.1.

Группы порядков 8, p, p 2 , pq, p 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiiaiaadchacaaISaGaaGiiaiaadchadaahaaWc beqaaiaaikdaaaGccaaISaGaaGiiaiaadchacaWGXbGaaGilaiaaic cacaWGWbWaaWbaaSqabeaacaaIZaaaaaaa@4374@ однозначно определяются указанием порядков и множествами ncl(G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOBaiaadogacaWGSbGaaGikaiaadEeacaaIPaaa aa@3D00@ , указанными в табл. 1 и 2.

 

Таблица 1

Table 1

G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raaaa@38CF@

|G|

c(n) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGUbGaaGykaaaa@3B43@

Z 8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaaI4aaabeaaaaa@39D0@

8

c(8)=4, c(4)=2, c(2)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaI4aGaaGykaiaai2dacaaI0aGa aGilaiaaiccacaWGJbGaaGikaiaaisdacaaIPaGaaGypaiaaikdaca aISaGaaGiiaiaadogacaaIOaGaaGOmaiaaiMcacaaI9aGaaGymaaaa @4870@

Z 4 × Z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaaI0aaabeaakiabgEna0kaa dQfadaWgaaWcbaGaaGOmaaqabaaaaa@3DB4@

8

c(4)=4, c(2)=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaI0aGaaGykaiaai2dacaaI0aGa aGilaiaaiccacaWGJbGaaGikaiaaikdacaaIPaGaaGypaiaaiodaaa a@4280@

Z 2 × Z 2 × Z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaaIYaaabeaakiabgEna0kaa dQfadaWgaaWcbaGaaGOmaaqabaGccqGHxdaTcaWGAbWaaSbaaSqaai aaikdaaeqaaaaa@419A@

8

c(2)=7 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaIYaGaaGykaiaai2dacaaI3aaa aa@3C94@

D 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiramaaBaaaleaacaaI0aaabeaaaaa@39B6@

8

c(4)=1, c(2)=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaI0aGaaGykaiaai2dacaaIXaGa aGilaiaaiccacaWGJbGaaGikaiaaikdacaaIPaGaaGypaiaaiodaaa a@427D@

Q 8 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyuamaaBaaaleaacaaI4aaabeaaaaa@39C7@

8

c(4)=3, c(2)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaI0aGaaGykaiaai2dacaaIZaGa aGilaiaaiccacaWGJbGaaGikaiaaikdacaaIPaGaaGypaiaaigdaaa a@427D@

 

Таблица 2

Table 2

G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raaaa@38CF@

|G| MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiFaiaadEeacaaI8baaaa@3ADB@

c(n) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGUbGaaGykaaaa@3B43@

Z p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaWGWbaabeaaaaa@3A03@

p

c(p)=p1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbGaaGykaiaai2dacaWGWbGa eyOeI0IaaGymaaaa@3EA9@

Z p 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaWGWbWaaWbaaeqabaGaaGOm aaaaaeqaaaaa@3AE1@

p 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCamaaCaaaleqabaGaaGOmaaaaaaa@39E1@

c(p)=p1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbGaaGykaiaai2dacaWGWbGa eyOeI0IaaGymaiaaiYcaaaa@3F5F@

 

 

c( p 2 )=p(p1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaaIYaaa aOGaaGykaiaai2dacaWGWbGaaGikaiaadchacqGHsislcaaIXaGaaG ykaaaa@41F6@

Z pq MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaWGWbGaamyCaaqabaaaaa@3AF9@

pq MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaiaadghaaaa@39EE@

c(p)=p1, c G (q)=q1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbGaaGykaiaai2dacaWGWbGa eyOeI0IaaGymaiaaiYcacaaIGaGaam4yamaaBaaaleaacaWGhbaabe aakiaaiIcacaWGXbGaaGykaiaai2dacaWGXbGaeyOeI0IaaGymaiaa iYcaaaa@4869@

 

 

c(pq)=pqpq+1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbGaamyCaiaaiMcacaaI9aGa amiCaiaadghacqGHsislcaWGWbGaeyOeI0IaamyCaiabgUcaRiaaig daaaa@444F@

<a,b: a q = b p =e, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGipaiaadggacaaISaGaamOyaiaaiQdacaWGHbWa aWbaaSqabeaacaWGXbaaaOGaaGypaiaadkgadaahaaWcbeqaaiaadc haaaGccaaI9aGaamyzaiaaiYcaaaa@4364@

pq MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaiaadghaaaa@39EE@

c G (p)=p1, c G (q)= q1 p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yamaaBaaaleaacaWGhbaabeaakiaaiIcacaWG WbGaaGykaiaai2dacaWGWbGaeyOeI0IaaGymaiaaiYcacaaIGaGaam 4yamaaBaaaleaacaWGhbaabeaakiaaiIcacaWGXbGaaGykaiaai2da daWcaaqaaiaadghacqGHsislcaaIXaaabaGaamiCaaaaaaa@49BA@

b 1 ab= a r >, r p 1(q) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOyamaaCaaaleqabaGaeyOeI0IaaGymaaaakiaa dggacaWGIbGaaGypaiaadggadaahaaWcbeqaaiaadkhaaaGccaaI+a GaaGilaiaaiccacaWGYbWaaWbaaSqabeaacaWGWbaaaOGaeyyyIORa aGymaiaaiIcacaWGXbGaaGykaaaa@489B@

 

 

Z p 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaWGWbWaaWbaaeqabaGaaG4m aaaaaeqaaaaa@3AE2@

p 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCamaaCaaaleqabaGaaG4maaaaaaa@39E2@

c(p)=p1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbGaaGykaiaai2dacaWGWbGa eyOeI0IaaGymaiaaiYcaaaa@3F5F@

 

 

c( p 2 )=p(p1), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaaIYaaa aOGaaGykaiaai2dacaWGWbGaaGikaiaadchacqGHsislcaaIXaGaaG ykaiaaiYcaaaa@42AC@

 

 

c( p 3 )= p 2 (p1), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaaIZaaa aOGaaGykaiaai2dacaWGWbWaaWbaaSqabeaacaaIYaaaaOGaaGikai aadchacqGHsislcaaIXaGaaGykaiaaiYcaaaa@43A0@

Z p 2 × Z p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaWGWbWaaWbaaeqabaGaaGOm aaaaaeqaaOGaey41aqRaamOwamaaBaaaleaacaWGWbaabeaaaaa@3F02@

p 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCamaaCaaaleqabaGaaG4maaaaaaa@39E2@

c(p)= p 2 1, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbGaaGykaiaai2dacaWGWbWa aWbaaSqabeaacaaIYaaaaOGaeyOeI0IaaGymaiaaiYcaaaa@4052@

 

 

c( p 2 )= p 2 (p1) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaaIYaaa aOGaaGykaiaai2dacaWGWbWaaWbaaSqabeaacaaIYaaaaOGaaGikai aadchacqGHsislcaaIXaGaaGykaaaa@42E9@

Z p × Z p × Z p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaWGWbaabeaakiabgEna0kaa dQfadaWgaaWcbaGaamiCaaqabaGccqGHxdaTcaWGAbWaaSbaaSqaai aadchaaeqaaaaa@4245@

p 3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCamaaCaaaleqabaGaaG4maaaaaaa@39E2@

c(p)= p 3 1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbGaaGykaiaai2dacaWGWbWa aWbaaSqabeaacaaIZaaaaOGaeyOeI0IaaGymaaaa@3F9D@

 

Доказательство.

Эти данные получаются прямыми вычислениями. Мы используем известные данные о генетическом коде этих групп, взятые из книги [11]. Мы видим, что эти множества различны.

4. Группы порядков p n ,n4, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiiaiaadchadaahaaWcbeqaaiaad6gaaaGccaaI SaGaamOBaiabgwMiZkaaisdacaaISaaaaa@3FAF@ с условием c( p n1 ,G)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaWGUbGa eyOeI0IaaGymaaaakiaaiYcacaWGhbGaaGykaiabgcMi5kaaicdaaa a@421A@  

Теорема 4.1.

Группы порядков p n ,n4, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiiaiaadchadaahaaWcbeqaaiaad6gaaaGccaaI SaGaamOBaiabgwMiZkaaisdacaaISaaaaa@3FAF@ с условием c( p n1 ,G)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaWGUbGa eyOeI0IaaGymaaaakiaaiYcacaWGhbGaaGykaiabgcMi5kaaicdaaa a@421A@ однозначно определяются порядком и частичными условиями на числа c(n,G), MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGUbGaaGilaiaadEeacaaIPaGa aGilaaaa@3D7B@ указаны в табл. 3 (для нечетных p) и табл. 4 (для p=2).

 

Таблица 3

Table 3

G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raaaa@38CF@

Частичные условия на c(n,G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGUbGaaGilaiaadEeacaaIPaaa aa@3CC5@

Z p n1 × Z p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaWGWbWaaWbaaeqabaGaamOB aiabgkHiTiaaigdaaaaabeaakiabgEna0kaadQfadaWgaaWcbaGaam iCaaqabaaaaa@40E1@

c( p n ,G)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaWGUbaa aOGaaGilaiaadEeacaaIPaGaaGypaiaaicdacaaISaaaaa@4028@

 

c( p n1 ,G)= p n p n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaWGUbGa eyOeI0IaaGymaaaakiaaiYcacaWGhbGaaGykaiaai2dacaWGWbWaaW baaSqabeaacaWGUbaaaOGaeyOeI0IaamiCamaaCaaaleqabaGaamOB aiabgkHiTiaaigdaaaaaaa@4729@

Z p n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaWGWbWaaWbaaeqabaGaamOB aaaaaeqaaaaa@3B18@

c( p n ,G)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaWGUbaa aOGaaGilaiaadEeacaaIPaGaeyiyIKRaaGimaaaa@4072@

<a,b: a p n1 = MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGipaiaadggacaaISaGaamOyaiaaiQdacaWGHbWa aWbaaSqabeaacaWGWbWaaWbaaeqabaGaamOBaiabgkHiTiaaigdaaa aaaOGaaGypaaaa@41A6@

 

= b p =e,ba= a 1+ p n2 b> MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGypaiaadkgadaahaaWcbeqaaiaadchaaaGccaaI 9aGaamyzaiaaiYcacaWGIbGaamyyaiaai2dacaWGHbWaaWbaaSqabe aacaaIXaGaey4kaSIaamiCamaaCaaabeqaaiaad6gacqGHsislcaaI YaaaaaaakiaadkgacaaI+aaaaa@47F4@

c( p n ,G)=0, c( p n1 ,G)= p n1 p n2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbWaaWbaaSqabeaacaWGUbaa aOGaaGilaiaadEeacaaIPaGaaGypaiaaicdacaaISaGaaGiiaiaado gacaaIOaGaamiCamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGc caaISaGaam4raiaaiMcacaaI9aGaamiCamaaCaaaleqabaGaamOBai abgkHiTiaaigdaaaGccqGHsislcaWGWbWaaWbaaSqabeaacaWGUbGa eyOeI0IaaGOmaaaaaaa@51A1@

 

Таблица 4

Table 4

G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raaaa@38CF@

Частичные условия на c(n,G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGUbGaaGilaiaadEeacaaIPaaa aa@3CC5@

Z 2 n MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaaIYaWaaWbaaeqabaGaamOB aaaaaeqaaaaa@3ADF@

c (2 n ,G)0 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaIYaWaaWbaaSqabeaacaWGUbaa aOGaaGilaiaadEeacaaIPaGaeyiyIKRaaGimaaaa@4039@

Z 2 n1 × Z 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaaIYaWaaWbaaeqabaGaamOB aiabgkHiTiaaigdaaaaabeaakiabgEna0kaadQfadaWgaaWcbaGaaG Omaaqabaaaaa@406F@

c (2 n ,G)=0, c (2 n1 ,G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaIYaWaaWbaaSqabeaacaWGUbaa aOGaaGilaiaadEeacaaIPaGaaGypaiaaicdacaaISaGaaGiiaiaado gacaaIOaGaaGOmamaaCaaaleqabaGaamOBaiabgkHiTiaaigdaaaGc caaISaGaam4raiaaiMcaaaa@47F6@

 

=2 n1 ,c(2)=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGypaiaaikdadaahaaWcbeqaaiaad6gacqGHsisl caaIXaaaaOGaaGilaiaadogacaaIOaGaaGOmaiaaiMcacaaI9aGaaG 4maaaa@419B@

D 2 n1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiramaaBaaaleaacaaIYaWaaWbaaeqabaGaamOB aiabgkHiTiaaigdaaaaabeaaaaa@3C71@

c (2 n ,G)=0, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaIYaWaaWbaaSqabeaacaWGUbaa aOGaaGilaiaadEeacaaIPaGaaGypaiaaicdacaaISaGaaGiiaaaa@4099@

 

c (2 n1 ,G )=2 n2 , c(2,G)=3 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaIYaWaaWbaaSqabeaacaWGUbGa eyOeI0IaaGymaaaakiaaiYcacaWGhbGaaGykaiaai2dacaaIYaWaaW baaSqabeaacaWGUbGaeyOeI0IaaGOmaaaakiaaiYcacaaIGaGaam4y aiaaiIcacaaIYaGaaGilaiaadEeacaaIPaGaaGypaiaaiodaaaa@4B25@

<a,b: a 2 n1 = b 2 =e, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGipaiaadggacaaISaGaamOyaiaaiQdacaWGHbWa aWbaaSqabeaacaaIYaWaaWbaaeqabaGaamOBaiabgkHiTiaaigdaaa aaaOGaaGypaiaadkgadaahaaWcbeqaaiaaikdaaaGccaaI9aGaamyz aiaaiYcaaaa@45AE@

c (2 n2 ,G )=2 n1 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaIYaWaaWbaaSqabeaacaWGUbGa eyOeI0IaaGOmaaaakiaaiYcacaWGhbGaaGykaiaai2dacaaIYaWaaW baaSqabeaacaWGUbGaeyOeI0IaaGymaaaakiaaiYcaaaa@446C@

ba b 1 = a 1+ 2 n2 > MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOyaiaadggacaWGIbWaaWbaaSqabeaacqGHsisl caaIXaaaaOGaaGypaiaadggadaahaaWcbeqaaiaaigdacqGHRaWkca aIYaWaaWbaaeqabaGaamOBaiabgkHiTiaaikdaaaaaaOGaaGOpaaaa @4459@

c (2 n ,G)=0, c(2,G)=2, c(8,G)=4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaIYaWaaWbaaSqabeaacaWGUbaa aOGaaGilaiaadEeacaaIPaGaaGypaiaaicdacaaISaGaaGiiaiaado gacaaIOaGaaGOmaiaaiYcacaWGhbGaaGykaiaai2dacaaIYaGaaGil aiaaiccacaWGJbGaaGikaiaaiIdacaaISaGaam4raiaaiMcacaaI9a GaaGinaaaa@4E1D@

<a,b: a 2 n1 = b 2 =e, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGipaiaadggacaaISaGaamOyaiaaiQdacaWGHbWa aWbaaSqabeaacaaIYaWaaWbaaeqabaGaamOBaiabgkHiTiaaigdaaa aaaOGaaGypaiaadkgadaahaaWcbeqaaiaaikdaaaGccaaI9aGaamyz aiaaiYcaaaa@45AE@

c G (2 n2 )=2 n2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yamaaBaaaleaacaWGhbaabeaakiaaiIcacaaI YaWaaWbaaSqabeaacaWGUbGaeyOeI0IaaGOmaaaakiaaiMcacaaI9a GaaGOmamaaCaaaleqabaGaamOBaiabgkHiTiaaikdaaaGccaaISaaa aa@43ED@

ba b 1 = a 1+ 2 n2 > MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOyaiaadggacaWGIbWaaWbaaSqabeaacqGHsisl caaIXaaaaOGaaGypaiaadggadaahaaWcbeqaaiabgkHiTiaaigdacq GHRaWkcaaIYaWaaWbaaeqabaGaamOBaiabgkHiTiaaikdaaaaaaOGa aGOpaaaa@4546@

c (2 n ,G)=0, c(2,G)=2, c(8,G)=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaIYaWaaWbaaSqabeaacaWGUbaa aOGaaGilaiaadEeacaaIPaGaaGypaiaaicdacaaISaGaaGiiaiaado gacaaIOaGaaGOmaiaaiYcacaWGhbGaaGykaiaai2dacaaIYaGaaGil aiaaiccacaWGJbGaaGikaiaaiIdacaaISaGaam4raiaaiMcacaaI9a GaaGOmaaaa@4E1B@

<a,b: a 2 n1 = b 2 =e, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGipaiaadggacaaISaGaamOyaiaaiQdacaWGHbWa aWbaaSqabeaacaaIYaWaaWbaaeqabaGaamOBaiabgkHiTiaaigdaaa aaaOGaaGypaiaadkgadaahaaWcbeqaaiaaikdaaaGccaaI9aGaamyz aiaaiYcaaaa@45AE@

 

b 2 = a 2 n2 ,ba b 1 = a 1 > MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOyamaaCaaaleqabaGaaGOmaaaakiaai2dacaWG HbWaaWbaaSqabeaacaaIYaWaaWbaaeqabaGaamOBaiabgkHiTiaaik daaaaaaOGaaGilaiaadkgacaWGHbGaamOyamaaCaaaleqabaGaeyOe I0IaaGymaaaakiaai2dacaWGHbWaaWbaaSqabeaacqGHsislcaaIXa aaaOGaaGOpaaaa@48D8@

c (2 n ,G)=0, c(2,G)=1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaaIYaWaaWbaaSqabeaacaWGUbaa aOGaaGilaiaadEeacaaIPaGaaGypaiaaicdacaaISaGaaGiiaiaado gacaaIOaGaaGOmaiaaiYcacaWGhbGaaGykaiaai2dacaaIXaaaaa@46A6@

 

Доказательство.

Условия на числа c(n,G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGUbGaaGilaiaadEeacaaIPaaa aa@3CC5@ находятся явными вычислениями из генетических кодов, приведенных в [11].

5. Группы Z p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwamaaBaaaleaacaWGWbaabeaaaaa@3A03@ и D p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiramaaBaaaleaacaWGWbaabeaaaaa@39ED@

В этом и следующем параграфах мы докажем несколько утверждений, в которых группа однозначно определяется частичными условиями на c(n,G) MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGUbGaaGilaiaadEeacaaIPaaa aa@3CC5@ без указания порядка группы.

Теорема 5.1.

Пусть p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaaaa@38F8@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ простое число. Тогда условия c(p,G)=p1, c(1,G)=1, c(n,G)=0 n1, p, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbGaaGilaiaadEeacaaIPaGa aGypaiaadchacqGHsislcaaIXaGaaGilaiaaiccacaWGJbGaaGikai aaigdacaaISaGaam4raiaaiMcacaaI9aGaaGymaiaaiYcacaaIGaGa am4yaiaaiIcacaWGUbGaaGilaiaadEeacaaIPaGaaGypaiaaicdaca aIGaGaeyiaIiIaaGiiaiaad6gacqGHGjsUcaaIXaGaaGilaiaaicca caWGWbGaaGilaaaa@57DE@ выполняются в том и только том случае, когда G Z p . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raiabgwKiajaadQfadaWgaaWcbaGaamiCaaqa baGccaaIUaaaaa@3CC4@

Доказательство.

В этой группе имеются элементы только порядка 1 и p. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaiaai6caaaa@39B0@ Имеется, по крайней мере, p1 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaiabgkHiTiaaigdaaaa@3AA0@ класс сопряженных элементов, эти классы образованы центральными элементами порядка p. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaiaai6caaaa@39B0@ Но больше классов для таких элементов нет. Получим, Z(G) Z p G. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamOwaiaaiIcacaWGhbGaaGykaiabgwKiajaadQfa daWgaaWcbaGaamiCaaqabaGccqGHfjcqcaWGhbGaaGOlaaaa@4107@

Пусть далее p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaaaa@38F8@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ нечетное простое число.

Теорема 5.2.

Условия c(p,G)= p1 2 , c(1,G)=c(2,G)=1, c(n,G)=0 n1, 2, p, MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4yaiaaiIcacaWGWbGaaGilaiaadEeacaaIPaGa aGypamaalaaabaGaamiCaiabgkHiTiaaigdaaeaacaaIYaaaaiaaiY cacaaIGaGaaGiiaiaaiccacaaIGaGaam4yaiaaiIcacaaIXaGaaGil aiaadEeacaaIPaGaaGypaiaadogacaaIOaGaaGOmaiaaiYcacaWGhb GaaGykaiaai2dacaaIXaGaaGilaiaaiccacaWGJbGaaGikaiaad6ga caaISaGaam4raiaaiMcacaaI9aGaaGimaiaaiccacqGHaiIicaaIGa GaamOBaiabgcMi5kaaigdacaaISaGaaGiiaiaaikdacaaISaGaaGii aiaadchacaaISaaaaa@6216@ выполняются в том и только том случае, когда G D p . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raiabgwKiajaadseadaWgaaWcbaGaamiCaaqa baGccaaIUaaaaa@3CAE@

Доказательство.

|G |=2 k p l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiFaiaadEeacaaI8bGaaGypaiaaikdadaahaaWc beqaaiaadUgaaaGccqGHflY1caWGWbWaaWbaaSqabeaacaWGSbaaaO GaaGOlaaaa@42A4@

В нашем случае G 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4ramaaBaaaleaacaaIYaaabeaaaaa@39B7@ абелева, так как любая группа экспоненты 2 абелева, в группе нет элементов порядка 2p. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGOmaiaadchacaaIUaaaaa@3A6C@ Нет элементов порядка 2p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGOmaiaadchaaaa@39B4@ и в фактор-группе G/ G . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raiaai+caceWGhbGbauaacaaIUaaaaa@3B18@

Поэтому если ord(g)=2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4BaiaadkhacaWGKbGaaGikaiaadEgacaaIPaGa aGypaiaaikdaaaa@3EAB@ , то |Z(g )|=2 k . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiFaiaadQfacaaIOaGaam4zaiaaiMcacaaI8bGa aGypaiaaikdadaahaaWcbeqaaiaadUgaaaGccaaIUaaaaa@40A1@

| g G |= p l . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiFaiaadEgadaahaaWcbeqaaiaadEeaaaGccaaI 8bGaaGypaiaadchadaahaaWcbeqaaiaadYgaaaGccaaIUaaaaa@3F9A@

Возникают две возможности : G G p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGabm4rayaafaGaeyyrIaKaam4ramaaBaaaleaacaWG Wbaabeaaaaa@3BFB@ или G G 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGabm4rayaafaGaey4HIOSaam4ramaaBaaaleaacaaI YaaabeaakiaaiYcaaaa@3D4E@ так как G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGabm4rayaafaaaaa@38DB@ целиком содержит или не содержит G 2 , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4ramaaBaaaleaacaaIYaaabeaakiaaiYcaaaa@3A77@ так как она является нормальной подгруппой, а элементы порядка 2 образуют один класс сопряженных элементов.

Случай 1. G G p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGabm4rayaafaGaeyyrIaKaam4ramaaBaaaleaacaWG Wbaabeaaaaa@3BFB@

|G|=| G p |+| g G |= p l + p l =2 p l , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiFaiaadEeacaaI8bGaaGypaiaaiYhacaWGhbWa aSbaaSqaaiaadchaaeqaaOGaaGiFaiabgUcaRiaaiYhacaWGNbWaaW baaSqabeaacaWGhbaaaOGaaGiFaiaai2dacaWGWbWaaWbaaSqabeaa caWGSbaaaOGaey4kaSIaamiCamaaCaaaleqabaGaamiBaaaakiaai2 dacaaIYaGaamiCamaaCaaaleqabaGaamiBaaaakiaaiYcaaaa@4EBB@

ord(g)=2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4BaiaadkhacaWGKbGaaGikaiaadEgacaaIPaGa aGypaiaaikdacaaIUaaaaa@3F63@ Получаем k=1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4Aaiaai2dacaaIXaGaaGOlaaaa@3B2D@

Пусть hZ( G p ), ord(h)=p, | h G |=2. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiAaiabgIGiolaadQfacaaIOaGaam4ramaaBaaa leaacaWGWbaabeaakiaaiMcacaaISaGaaGiiaiaad+gacaWGYbGaam izaiaaiIcacaWGObGaaGykaiaai2dacaWGWbGaaGilaiaaiccacaaI GaGaaGiFaiaadIgadaahaaWcbeqaaiaadEeaaaGccaaI8bGaaGypai aaikdacaaIUaaaaa@4F32@ Существуют p1 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaWaaSaaaeaacaWGWbGaeyOeI0IaaGymaaqaaiaaikda aaaaaa@3B6C@ классов сопряженных элементов, которые состоят из элементов h,... h p1 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiAaiaaiYcacaaIUaGaaGOlaiaai6cacaWGObWa aWbaaSqabeaacaWGWbGaeyOeI0IaaGymaaaakiaai6caaaa@4047@ Все классы сопряженных элементов мы перебрали, для других элементов порядка p MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCaaaa@38F8@ больше нет места. Получаем, что |G|=2p. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiFaiaadEeacaaI8bGaaGypaiaaikdacaWGWbGa aGOlaaaa@3E0B@

Таким образом, G D p , MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raiabgwKiajaadseadaWgaaWcbaGaamiCaaqa baGccaaISaaaaa@3CAC@ так как G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raaaa@38CF@ MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ неабелева группа.

Случай 2. G G 2 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGabm4rayaafaGaey4HIOSaam4ramaaBaaaleaacaaI Yaaabeaaaaa@3C8E@

В этом случае |G/ G |= p k , 0<kl. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaaGiFaiaadEeacaaIVaGabm4rayaafaGaaGiFaiaa i2dacaWGWbWaaWbaaSqabeaacaWGRbaaaOGaaGilaiaaiccacaaIGa GaaGimaiaaiYdacaWGRbGaeyizImQaamiBaiaai6caaaa@4727@

Тогда

p k p1 2 +2= p+3 2 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamiCamaaCaaaleqabaGaam4AaaaakiabgsMiJoaa laaabaGaamiCaiabgkHiTiaaigdaaeaacaaIYaaaaiabgUcaRiaaik dacaaI9aWaaSaaaeaacaWGWbGaey4kaSIaaG4maaqaaiaaikdaaaGa aGOlaaaa@45BA@

Это невозможно.

6. Группа A 4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaamyqamaaBaaaleaacaaI0aaabeaaaaa@39B3@

Теорема 6.1.

Условия c(3,G)=c(1,G)=c(2,G)=c(n,G)=n выполняются в том и только том случае, когда GA4.

Доказательство.

В группе 4 класса сопряженных классов группа G MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaapaGaam4raaaa@38CF@ неабелева и разрешима.

Случай 1. G'G2,G/G'Z3.

|G|=32l.

В этом случае G/G' является степенью числа 3, но не может быть больше 3, так как G/G'  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ это количество одномерных передставлений, а оно не превосходит 4 в нашей ситуации.

Если ord(g)=2, то |gG|=3, так как Z(g)=G2.

2l1=3, l=2.

|G|=12.

GA4.

Случай 2. G'G3,G/G'Z2.

Группа неабелева, все ее представления не могут быть одномерными, поэтому если G'G3, то G/G'Z2.

|G|=23m.

S3 не удовлетворяет условию на классы сопряженных элементов, поэтому m2.

Пусть h,h2Z(G3)ord(h)=ord(h2)=3.

|hG|=|(h2)G|=2.

Если h и h2 не сопряжены, то |G3|=5, а это невозможно.

Если эти элементы сопряжены, то рассмотрим элемент третьего порядка f, который с ними не сопряжен, в классе fG содержатся все оставшиеся элементы порядка 3.

|fG|=3m3 делит 23m.

3m11|2. Получаем |G| = 18. Но группы порядка 18 не удовлетворяют заявленному условию на классы сопряженных элементов.

Случай 3. G/G'Z3G'G3G'G2.

|G|=2l3m.

Один класс сопряженных элементов порядка 3 лежит в G', а другой MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ нет.

Пусть hG'ord(h)=3.

|hG|=2l3m2l3m1=2l+13m1.

|hG| делит 2l3m. Получаем противоречие.

7. Группы с одинаковым ncl(G)

Пример 7.1.

G<a,b,c:a5=b5=c4=e,

c1ac=a2c1bc=b2ab=ba>,

H<a,b,c:a5=b5=c4=e,

c1ac=a2c1bc=b3ab=ba>.

Эти группы имеют одинаковые множества ncl(G),

c(2)=c(4)=c(5)=6.

Однако эти группы неизоморфны. В группе H можно найти такие элементы порядков 5 и 4, которые порождают всю группу. Например, это элементы ab и c. В группе G таких элементов нет. Любая пара элементов, где один пятого, а другой четвертого порядка, порождает группу порядка 20.

Пример 7.2.

Пусть p  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ нечетное простое число,

l=1+pm=1p.

G1<a,b,c:ap2=bp2=cp=e, c1ac=alc1bc=blab=ba>,

G2<a,b,c:ap2=bp2=cp=e, c1ac=alc1bc=bmab=ba>.

|G1|=|G2|=p5,

c(p,G)=c(p,H)=p2+pc(p2,G)=c(p2,H)=2p3p22p+1.

Рассмотрим группу G1. Центр этой группы Z(G1)=<ap>×<bp>.

Рассмотрим подгруппу H=<a>×<b>. В H имеется p4p2 элементов p2. Каждый класс содержит p элементов. Возникает p3p классов. Вне H имеется (p4p2)(p1) элементов порядка p2. Централизатор каждого такого элемента имеет порядок p3, индекс централизатора равен p2. Вне H лежит (p21)(p1) классов, состоящих из элементов порядка p2. Итак, c(p2,G)=2p3p22p+1. В H имеется p21 элементов p. Каждый класс состоит из одного элемента. Вне H имеется p3 элементов порядка p. Централизатор каждого такого элемента имеет порядок p3, индекс централизатора равен p2. Возникает p классов. Итак, c(p,G)=p2+p1.

Во второй группе есть подгруппа порядка p4, порожденная элементом порядка p2 и элементом порядка p. Эта подгруппа является прямым произведением метациклической группы и циклической группы. В первой группе такой подгруппы нет. Любой элемент порядка p2 и элемент порядка p, который не является степенью первого, порождают подгруппу порядка p3.

В монографии [2] на странице 307 приводится следующая теорема.

Теорема 7.3.

Пусть группа G равна прямому произведению G1×G2 своих подгрупп G1 и G2. Тогда, если C1  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ класс сопряженных элементов группы G1, а C2  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ класс сопряженных элементов группы G2, то всевозможные произведения вида g1g2, где g1G1g2G2, образуют класс сопряженных элементов самой группы G, и обратно, каждый класс сопряженных элементов группы G получается таким образом.

Из нее сразу следует

Утверждение 7.4.

Если ncl(G)=ncl(H)F  MathType@MTEF@5@5@+= feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcqqaaaaaaaaGqSf 2yRbWdbeaaruWqHXwAIjxAaGqbaKqzGfaeaaaaaaaaa8GacaWFuaca aa@3C73@ некоторая группа, то

ncl(G×F)=ncl(H×F).

Поэтому рассматривать неизоморфные группы с одинаковыми множествами ncl(G) следует с точностью до умножения на одинаковый прямой множитель. Интересно исследовать, насколько схожей является структура групп с одинаковым ncl(G). Например, если группа G является полупрямым произведением подгруппы H и фактора G/H=F, то верно ли это для всех групп с таким же множеством ncl(G)? Во всех известных примерах это так.

Выводы

Таким образом, в статье показывается, что изучение структуры группы по множеству ncl(G) является актуальной проблемой, так как группы многих типов могут быть определены этим множеством однозначно, и в любом случае знание этого множества является хорошей стартовой площадкой для ее изучения.

×

About the authors

Galina V. Voskresenskaya

Samara National Research University

Author for correspondence.
Email: galvosk@mail.ru
ORCID iD: 0000-0002-6288-5372

Doctor of Physical and Mathematical Sciences, Professor of the Department of Algebra and Geometry

Russian Federation, Samara

References

  1. Vinberg E.B. Course of algebra. Мoscow: Faktorial Press, 2002, 544 p. Available at: https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxraG1lbG5pdG1ldGF1YXxneDoz MDhiMmU3NTg2MzJhNTY0. (In Russ.)
  2. Golovina L.I. Linear algebra and some its applications. Moscow: Nauka, 1975, 408 p. Available at: https://studizba.com/files/show/djvu/2439-1-l-i-golovina–lineynaya-algebra-i.html. (In Russ.)
  3. Voskresenskaya G.V. Group recognition by conditions on classes of conjugate elements. In: Eighth school-conference "Lie algebras, algebraic groups and the theory of invariants". Abstracts. Мoscow: MTsNMO, 2020, p. 19. (In Russ.)
  4. Gorshkov I.B. Recognizability of Symmetric Groups by Spectrum. Algebra and Logic, 2014, vol. 53, issue 6, pp. 450–457. DOI: http://doi.org/10.1007/s10469-015-9306-0. (In English; original in Russian).
  5. Gorshkov I.B., Maslova N.V. Finite almost simple groups whose Gruenberg-Kegel graphs coicide with Gruenberg-Kegel graphs of solvable groups. Algebra and Logic, 2018, vol. 57, issue 2, pp. 115–129. DOI: http://doi.org/10.1007/s10469-018-9484-7. EDN: https://www.elibrary.ru/ycchpv. (In English; original in Russian).
  6. Kargapolov M.I., Merzlyakov Yu.I. Basics of group theory. Saint Petersburg: Lan’, 2022, 288 p. Availabl at: https://lanbook.com/catalog/matematika/osnovy-teorii-grupp-73277352/.
  7. Coxeter H.S.M., Moser W.O.J. Generators and relations for discrete groups. Мoscow: Nauka, 1980, 240 p. Available at: https://knigogid.ru/books/1868817-porozhdayuschie-elementy-i-opredelyayuschie-sootnosheniya-diskre- tnyh-grupp/toread. (In Russ.)
  8. Conway J.H., Curtis R.T., Norton S.P., Parker R.A., Wilson R.A. Atlas of Finite Groups: Maximal Subgroups and Ordinary Characters for Simple Groups. Oxford: Oxford Press, 1985, 252 p.
  9. Mazurov V.D. Recognition of finite groups by a set of orders of their elements. Algebra and Logic, 1998, vol. 37, issue 6, pp. 371–379. DOI: http://doi.org/10.1007/BF02671691. (in English; original in Russian).
  10. Panshin V.V. On group recognition by the set of dimensions of conjugate classes. In: Second conference of Russian Mathematical Centers (November 7-11, 2022): abstracts. Moscow: Izd-vo MGU, 2022, pp. 172–173. Available at: https://www.mathnet.ru/php/presentation.phtml?option_lang=rus&presentid=36711. (In Russ.)
  11. Hall М. Group theory. Мoscow: Izd–vo inostr. lit., 1962, 468 p. Available at: https://vdocuments.site/ 589c3be41a28abec478b5da7.html?page=1. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Voskresenskaya G.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies