The structure of the swirling flow in the counterflow vortex reactor
- Authors: Porfiriev D.P.1,2, Zavershinskii I.P.1, Agapova D.V.1,2
-
Affiliations:
- Samara National Research University
- Samara branch of the Lebedev Physical Institute of the Russian Academy of Sciences
- Issue: Vol 28, No 1-2 (2022)
- Pages: 106-112
- Section: Mathematical Methods in Natural Sciences
- URL: https://journals.ssau.ru/est/article/view/10981
- DOI: https://doi.org/10.18287/2541-7525-2022-28-1-2-106-112
- ID: 10981
Cite item
Full Text
Abstract
Two promising designs of counterflow vortex reactor were numerically investigated. Such apparatus utilizes reverse flow to withdraw thermal energy and products from interelectrode area. Complex gasdynamic structure of the water-vapor flow was investigated using turbulent three-dimensional simulation employing Reynolds averaged Navier-Stokes equations along with SST turbulence model – technique tested in earlier papers. Presented velocity profiles and heat flux reports demonstrate viability of both approaches.
About the authors
Denis P. Porfiriev
Samara National Research University; Samara branch of the Lebedev Physical Institute of the Russian Academy of Sciences
Author for correspondence.
Email: ipzav63@mail.ru
ORCID iD: 0000-0003-2203-8133
Candidate of Physical and Mathematical Sciences, associate professor of the Department of Physics; research associate of the Theoretical Department
Russian Federation, Samara; SamaraIgor P. Zavershinskii
Samara National Research University
Email: ipzav63@mail.ru
ORCID iD: 0000-0002-2391-1881
Doctor of Physical and Mathematical Sciences, professor of the Department of Physics
Russian Federation, SamaraDaria V. Agapova
Samara National Research University; Samara branch of the Lebedev Physical Institute of the Russian Academy of Sciences
Email: agapovadaria2019@gmail.com
ORCID iD: 0000-0002-3957-7339
Master Degree Student of the Physical Department; junior researcher of the Theoretical Department
Russian Federation, Samara; SamaraReferences
- Klimov A.I. [et al.] Hydrogen Plasma Flow Creation for MHD Power Generation. 42nd AIAA Plasmadynamics and Lasers Conference in conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD), 2011, p. 3285. DOI: http://doi.org/10.2514/6.2011-3285.
- Bityurin V.A., Klimov A.I., Korshunov O.V., Chinnov V.F. Kinetic model of aluminum oxidation by water vapor in heterogeneous plasma: Gas-phase kinetics. High Temperature, 2014, vol. 52, no. 5, pp. 621–626. DOI: http://doi.org/10.1134/S0018151X14050034. EDN: https://elibrary.ru/ufjcmb. (in English; Russian original).
- Bityurin V.A., Klimov A.I., Korshunov O.V., Chinnov V.F. Kinetic model of Al oxidation by water vapor in heterogeneous plasma: Heterophase kinetics. High Temperature, 2015, vol. 53, no. 1, pp. 21–26. DOI: http://doi.org/10.1134/S0018151X14060042. EDN: https://elibrary.ru/uflcsn. (in English; Russian original).
- Kazanskiy P.N., Klimov A.I., Molevich N.E., Porfiriev D.P., Zavershinskii I.P. Numerical simulation of an argon swirling flow in the presence of a DC discharge. Journal of Physics: Conference Series, 2018, vol. 980, no. 1, p. 012010. DOI: http://doi.org/10.1088/1742-6596/980/1/012010.
- Gorbunova A., Molevich N., Porfiriev D., Sugak S., Zavershinskii I., Klimov A., Moralev I. Precessing vortex core in a swirling wake with heat release. International Journal of Heat and Fluid Flow, 2016, vol. 59, pp. 100–108. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2016.03.002. EDN: https://elibrary.ru/wvzodt.
- Zavershinskii I.P., Klimov A.I., Makaryan V.G., Molevich N.E., Moralev I.A., Porfir’ev D.P. Structure of RF capacitive discharge in swirl airflow at atmospheric pressure. Technical Physics Letters, 2011, vol. 37, no. 12, p. 1120–-1123. DOI: http://dx.doi.org/10.1134/S1063785011120157.
- Belov N.K., Zavershinskii I.P., Klimov A.I., Molevich N.E., Porfiriev D.P., Tolkunov B.N. High effective heterogeneous plasma vortex reactor for production of heat energy and hydrogen. Journal of Physics: Conference Series, 2018, vol. 980, no. 1, p. 012040. DOI: http://dx.doi.org/10.1088/1742-6596/980/1/012040.
Supplementary files
