How the distance between subspaces in the metric of a spherical opening affects the geometric structure of a symmetric space
- Authors: Strakhov S.I.1
-
Affiliations:
- Samara National Research University
- Issue: Vol 28, No 1-2 (2022)
- Pages: 23-31
- Section: Mathematics
- URL: https://journals.ssau.ru/est/article/view/10966
- DOI: https://doi.org/10.18287/2541-7525-2022-28-1-2-23-31
- ID: 10966
Cite item
Full Text
Abstract
A relationship is found between the metric of a spherical opening on the space of all subspaces of a symmetric space and some numerical characteristic of the subspace. It is known that, for example, in this characteristic takes only two values (i.e. this is a binary space), while in there are infinitely many values. Using the connection found, the necessary conditions for the binarity of a symmetric space were generalized.
About the authors
Stepan I. Strakhov
Samara National Research University
Author for correspondence.
Email: www.stepan121@mail.ru
ORCID iD: 0000-0002-2905-9124
assistant of the Department of Functional Analysis and Function Theory
Russian Federation, SamaraReferences
- Strakhov S.I. On a characteristic of strongly embedded subspaces in symmetric spaces. Vestnik Samarskogo universiteta. Estestvennonauchnaia seriia = Vestnik of Samara University. Natural Science Series, 2021, vol. 27, no. 2, pp. 25–32. DOI: http://doi.org/10.18287/2541-7525-2021-27-2-25-32. EDN: https://www.elibrary.ru/syswca. (In Russ.)
- Novikov S.Ya., Semenov E.M., Tokarev E.V. The structure of subspaces of the space . Dokl. Akad. Nauk SSSR, 1979, vol. 20, pp. 760–761. Available at: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=dan&paperid=42865&option_lang=rus (English; Russian original).
- Rosenthal H.P. On subspaces of . Annals of Mathematics, 2nd Ser., 1973, vol. 97, 2, pp. 344–373. DOI: http://doi.org/10.2307/1970850.
- Lindenstrauss J., Tzafriri L. On Orlicz sequence spaces. III. Israel Journal of Mathematics, 1971, vol. 10, no. 3, pp. 368–389. DOI: http://doi.org/10.1007/BF02764715.
- Astashkin S.V. The Rademacher system in function spaces. Moscow: Fizmatlit, 2017, 549 p. Available at: https://fireras.su/biblio/?p=16653. (In Russ.)
- Berkson E. Some metrics on the subspaces of a Banach space. Pacific Journal of Mathematics, 1963, vol. 13, no. 1, pp. 7–22. DOI: http://doi.org/10.2140/PJM.1963.13.7.
- Novikov S.Ya. Geometric properties of symmetric spaces: Candidate’s of Physical and Mathematical Sciences thesis. Voronezh, 1980. (In Russ.)
- Gokhberg I.Ts., Krein M.G. Fundamental aspects of defect numbers, root numbers and indexes of linear operators. Uspekhi Mat. Nauk, 1957, vol. 12, issue 2 (74), pp. 43–118. Available at: https://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=rm&paperid=7581&option_lang=rus. (In Russ.)
- Astashkin S.V. On symmetric spaces containing isomorphic copies of Orlicz sequence spaces. Commentationes Mathematicae, 2016, vol. 56, no. 1, pp. 29–44. DOI: http://doi.org/10.14708/CM.V56I1.1113.
- Astashkin S.V. The structure of subspaces in Orlicz spaces between and , 2022. DOI: http://dx.doi.org/10.48550/arXiv.2208.07215.
- Nakamoto R. The spherical gap of operators. Linear Algebra and Its Applications, 1997, vol. 251, pp. 89–95. DOI: http://dx.doi.org/10.1016/0024-3795(95)00697-4.
- Ostrovskii M.I. Topologies on the set of all subspaces of a Banach space and related questions of Banach space geometry. Quaestiones Mathematicae, 1994, vol. 17, issue 3, pp. 259–319. DOI: http://doi.org/10.1080/16073606.1994.9631766.
- Astashkin S.V.,Strakhov S.I. On Symmetric Spaces With Convergence in Measure on Reflexive Subspaces. Russian Mathematics, 2018, vol. 62, no. 8, pp. 1–8. DOI: http://doi.org/10.3103/S1066369X18080017. EDN: https://www.elibrary.ru/vcdwts. English; Russian original.
- Figiel T., Johnson W.B., Tzafriri L. On Banach lattices and spaces having local unconditional structure, with applications to Lorentz function spaces. Journal of Approximation Theory, vol. 13, issue 4, April 1975, pp. 395–412. DOI: http://dx.doi.org/10.1016/0021-9045(75)90023-4.
Supplementary files
