Estimation and analysis of the influence of ionizing radiation on the operation of nanosatellite onboard radio electronic equipment


Cite item

Full Text

Abstract

The paper presents the results of a calculation aimed to study the influence of ionizing, bremsstrahlung radiation on the operation of a nanosatellite obtained during the implementation of the project 0777-2020-0018 in 2020. A comparative analysis of the results of calculating the specific ionization and radiation energy losses of protons (from 0.1 to 400 MeV) and electrons (from 0.04 to 7 MeV), as well as their path lengths in aluminum according to the formulas of various authors and the database of materials of the National Institute of Standards and Technologies is presented. Based on the analysis results, the annual dose in the aluminum structure of the SamSat – ION nanosatellite in a circular sun-synchronous orbit (SSO) is calculated. All calculations are based on the data of the energy spectra of protons and electrons of the SSO given in the “Information system Spenvis of the European Space Agency”. The results of calculating the integral fluxes in aluminum under the action of protons and electrons of a circular SSO for different thicknesses are obtained, and the fraction of passed particles is shown in the approximation of a single-layer stack. The radiation resistance of the electronic elements ISL70321SEH, ISL73321SEH and Virtex-4QV, Virtex-5QV included in the SamSat – ION avionics and its ability to operate during a year was assessed.

About the authors

S. V. Tsaplin

Samara National Research University

Author for correspondence.
Email: tsaplin56@yandex.ru
ORCID iD: 0000-0002-1689-0744

Candidate of Science (Phys. & Math.), Head of the Laboratory «Radiation-Matter Interaction and Radiation Resistance of Materials», Department of Radio Physics, Semiconductor Micro- and Nanoelectronics

Russian Federation

S. A. Bolychev

Samara National Research University

Email: bolychevsa@mail.ru
ORCID iD: 0000-0002-9471-6282

Lead Software Engineer of the Laboratory «Radiation-Matter Interaction and Radiation Resistance of Materials»

Russian Federation

References

  1. Kuznetsov N.V., Panasyuk M.I. Space radiation and prediction of failure and fault tolerance of integrated circuits in spacecraft onboard equipment. Questions of Atomic Science and Technics. Series: Physics of Radiation Effects on Radio-Electronic Equipment. 2001. Iss. 1-2. P. 3-8. (In Russ.)
  2. Gul'ko O.E. Failure mechanisms of CMOS ICs when exposed to ionizing particles of cosmic radiation. Questions of Atomic Science and Technics. Series: Physics of Radiation Effects on Radio-Electronic Equipment. 2005. Iss. 1-2. P. 80-83. (In Russ.)
  3. Anashin V.S., Alekseev I.I., Bodin V.V., Gerasimov V.F., Golovko A.V., Davydov V.A., Dikaya N.Yu., Zinchenko V.F., Ishutin I.O., Kuznetsov N.V., Makarov Yu.N., Mikhaylov M.A., Nagaev K.D., Nikolaeva N.I., Nymmik R.A., Osipenko P.N., Panasyuk M.I., Pershenkov V.S., Protopopov G.A., Raykunov G.G., Sobolev S.A., Tapero K.I., Uzhegov V.M., Ulimov V.N., Khaustov V.V., Chubunov P.A., Shivanov A.V., Yushkov B.Yu., Yakovlev M.V. Ioniziruyushchee izluchenie kosmicheskogo prostranstva i ikh vozdeystvie na bortovuyu apparaturu kosmicheskikh apparatov [Ionizing radiation from outer space and its impact on the spacecraft onboard equipment]. Moscow: Fizmatlit Publ., 2013. 256 p.
  4. Tsaplin S.V., Tyulevin S.V., Piganov M.N., Bolychev S.A. Issledovanie svoystv radioelektronnykh elementov pri vozdeystvii ionizatsionnogo potoka: uchebnoe posobie [Investigation of the properties of radioelectronic elements under the influence of an ionization flow]. Samara: Samara University Publ., 2018. 180 p.
  5. OST 134-1034-2003 Industry standard. Spacecraft apparatus, devices, devices and equipment. Methods for testing and assessing the resistance of onboard radio-electronic equipment of spacecraft to the effects of electronic and proton radiation from outer space by dose effects. Moscow: Central Research Institute for Machine Building Publ., 2003. 43 p.
  6. RD 134-0139-2005. Spacecraft apparatus, devices, devices and equipment. Methods for assessing the resistance to the impact of charged particles of outer space by single failures and failures. Moscow: Central Research Institute for Machine Building Publ., 2005. 74 p.
  7. RD V 319.03.39-2000. Electronic products. Control and prediction of safety in conditions of long-term combined exposure to low-intensity ionizing radiation and thermal current loads based on the results of accelerated tests. Moscow: TK po Voennoy Standartizatsii no. 319 MO RF Publ., 2000. 39 p.
  8. RD 11 1003-2000. Semiconductor electronics products. Method of predicting reliability under conditions of low-intensity ionizing radiation. SPb.: RRI «Electronstandart» Publ., 2000. 27 p.
  9. Lishnevskii A.E., Benghin V.V. Method for short-term forecast of absorbed doze accumulation dynamics at international space station based on radiation monitoring system data. Vestnik NPO im. S.A. Lavochkina. 2013. No. 5 (21). P. 54-59. (In Russ.)
  10. Zebrov G.I. Modelirovanie dozovykh i odinochnykh radiatsionnykh effektov v kremnievykh mikro- i nanoelektronnykh strukturakh dlya tsepey proektirovaniya i prognozirovaniya. Dis. … doktora tekhn. nauk [Modeling dose and single radiation effects in silicon micro- and nanoelectronic structures for design and prediction circuits]. Moscow, 2009. 156 p.
  11. Luk"yashchenko V.I., Uzhegov V.M., Yakovlev M.V., Borisov Yu.A., Ulimov V.N., Zinchenko V.F., Zhukov Yu.N., Gerasimov V.F., Khaustov V.V. Methods for testing and assessing the resistance of onboard radio-electronic equipment of spacecraft with long periods of active life to the effects of ionizing radiation from outer space. Questions of Atomic Science and Technics. Series: Physics of Radiation Effects on Radio-Electronic Equipment. 2001. Iss. 3-4. P. 81-87. (In Russ.)
  12. Akimov A.A., Gritsenko A.A., Yur'ev R.N. Sun-synchronous orbits – main opportunities and prospects. Infosfera. 2015. No. 68. P. 31-33. (In Russ.)
  13. Tapero K.I., Didenko S.I. Osnovy radiatsionnoy stoykosti izdeliy elektronnoy tekhniki: radiatsionnye effekty v izdeliyakh elektronnoy tekhniki: uchebnoe posobie [Fundamentals of radiation resistance of electronic products: radiation effects in electronic products]. Moscow: Izdatel'skiy Dom MISiS Publ., 2013. 349 p.
  14. Tapero K.I., Ulimov V.N., Chlenov A.M. Radiatsionnye effekty v kremnievykh integral'nykh skhemakh kosmicheskogo primeneniya [Radiation effects in silicon integrated circuits for space applications]. Moscow: BINOM. Laboratoriya Znaniy Publ., 2012. 304 p.
  15. Luk'yashchenko V.I., Uzhegov V.M., Yakovlev M.V., Kuvshinnikov V.M., Mikhaylov M.A., Shivanov A.V., Getselev I.V., Kuznetsov N.V., Nymmik R.A., Zinchenko V.F., Ulimov V.N. Radiation conditions on board spacecraft. Questions of Atomic Science and Technics. Series: Physics of Radiation Effects on Radio-Electronic Equipment. 2004. Iss. 1-2. P. 3-16. (In Russ.)
  16. Demidov A.A. Issledovaniya radiatsionnoy stoykosti submikronnykh KMOP SBIS na KNI-strukturakh. Nauchno-tekhnicheskiy sbornik «Radiatsionnaya Stoykost' Elektronnykh Sistem – Stoykost'-2004». Iss. 7. Moscow: MEPhI Publ., 2004. P. 77-78. (In Russ.)
  17. Agakhanyan T.M., Astvatsatur'yan E. R., Skorobogatov P.K. Radiatsionnye effekty v kremnievykh integral'nykh mikroskhemakh [Radiation effects in silicon integrated microcircuits]. Moscow: Energoatomizdat Publ., 1989. 252 p.
  18. Vologdin E.N., Lysenko A.P. Radiatsionnye effekty v nekotorykh klassakh poluprovodnikovykh priborov: uchebnoe posobie [Radiation effects in some classes of semiconductor devices: manual]. Moscow: Moscow Institute of Electronics and Mathematics Publ., 2001. 70 p.
  19. Vologdin E.N., Lysenko A.P. Radiatsionnye effekty v integral'nykh mikroskhemakh i metody ispytaniy izdeliy poluprovodnikovoy elektroniki na radiatsionnuyu stoykost': uchebnoe posobie [Radiation effects in integrated microcircuits and methods for testing semiconductor electronic products for radiation resistance]. Moscow: Moscow Institute of Electronics and Mathematics Publ., 2002. 46 p.
  20. SPENVIS. The Space Environment Information System. Available at: https://www.spenvis.oma.be
  21. Bezrodnikh I.P., Kazantsev S.G., Semenov V.T. Radiation environment of sun-synchronous orbit in the sunspot maximum period. Electromechanical Matters. VNIIEM Studies. 2010. V. 116, no. 3. P. 23-26. (In Russ.)
  22. Bespalov V.I. Lektsii po radiatsionnoy zashchite: uchebnoe posobie [Lectures on radiation protection]. Tomsk: Tomsk Polytechnic University Publ., 2017. 695 p.
  23. Pavlenko V.I., Edamenko O.D., Cherkashina N.I., Noskov A.V. Total energy losses of relativistic electrons passing through a polymer composite. Journal of Surface Investigation. 2014. V. 8, Iss. 2. P. 398-403. doi: 10.1134/S1027451014020402
  24. Byakov V.M., Stepanov S.V., Magomedbekov E.P. Nachala radiatsionnoy khimii: uchebnoe posobie [Basics of radiation chemistry]. Moscow: D. Mendeleev University of Chemical Technology of Russia Publ., 2012. 166 p.
  25. Bekman I.N. Atomnaya i yadernaya fizika: radioaktivnost' i ioniziruyushchee izluchenie: uchebnik dlya bakalavriata i magistratury [Atomic and nuclear physics: radioactivity and ionizing radiation]. Moscow: Yurayt Publ., 2017. 398 p.
  26. Mukhin K.N. Eksperimental'naya yadernaya fizika. Kniga 1. Fizika atomnogo yadra [Experimental nuclear physics. Book 1. Physics of the atomic nucleus]. Moscow: Energoatomizdat Publ., 1993. 376 p.
  27. National Institute of Standards and Technology. The PSTAR program. Available at: https://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
  28. Zhukovskii M.Ye., Skachkov M.V. On statistic methods of modeling electrons transport in substance. Herald of the Bauman Moscow State Technical University. Series Natural Sciences. 2009. No. 1 (32). P. 31-46. (In Russ.)
  29. RD 50-25645.216-90. Manual. Radiation safety of a spacecraft crew in space flight. Method for calculating the distribution of absorbed and equivalent doses of cosmic radiation over the thickness of materials on the outer surface of a spacecraft in orbits passing through the Earth's Van Allen Radiation Belts. Moscow: Izdatel'stvo Standartov Publ., 1990. 10 p. (In Russ.)
  30. Khasanshin R.K., Novikov L.S. Changes in K-208 glass transmittance spectra under ionizing radiation and molecular fluxes. Journal of Surface Investigation. 2014 V. 8, Iss. 4. P. 698-702. doi: 10.1134/S1027451014040090
  31. Thompson S., Alavi M., Hussein M., Jacob P., Kenyon C., Moon P., Prince M., Sivakumar S., Tyagi S., Bohr M. 130nm logic technology featuring 60nm transistors, low-k dielectrics, and Cu interconnect. Intel Technology Journal. 2002. V. 6, Iss. 2. P. 5-13.
  32. Radiation hardened quad power supply sequencers. ISL70321SEH, ISL73321SEH. Available at: https://www.renesas.com/us/en/document/dst/isl70321seh-isl73321seh-datasheet
  33. Space-grade Virtex-5QV FPGA. Available at: https://www.xilinx.com/products/silicon-devices/fpga/virtex-5qv.html
  34. Radiation-hardened FPGA for defense and aerospace application. Available at: https://www.xilinx.com/
  35. Zebrev G.I. Radiatsionnye effekty v kremnievykh integral'nykh skhemakh vysokoy stepeni integratsii [Radiation effects in high-integration silicon integrated circuits]. Moscow: MEPhI Publ., 2010. 148 p.
  36. Novoe semeystvo radiatsionno-stoykikh mikroskhem ot XILINX [XILINX's new family of radiation-hardened microcircuits]. Available at: https://www.macrogroup.ru/news/2014/140
  37. Schmidt F.H.Jr. Fault tolerant design implementation on radiation hardened by design SRAM-based FPGAs. S.M. Thesis. Massachusetts Institute of Technology, Boston, 2013. 204 p.
  38. Belous A.I., Solodukha V.A., Shvedov S.V. Kosmicheskaya elektronika. Kniga 2 [Space electronics. Book 2]. Moscow: Tekhnosfera Publ., 2015. 488 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies