Calculation of flow characteristics of liquid fuel supplied through pressure jet atomizers of small-sized gas turbine engines

Abstract

The paper presents the results of studying the flow characteristics of liquid fuel in pressure jet atomizers of small-sized gas turbine engines with nozzle diameters of 0.4-0.6 mm for various operating and design parameters. The study was carried out using experimental measurements, semi-empirical correlations and CFD (computational fluid dynamics) methods. The Euler approach, the volume- of- fluid (VOF) method, was used to model multiphase flows in CFD simulations. Good agreement was obtained between experimental and predicted data on the fuel coefficient and the primary spray cone angle at the nozzle outlet. Besides, the assessment of the applicability of semi-empirical techniques for the nozzle configurations under consideration is given. In the future, the flow characteristics in question (the nozzle flow rate, the fuel film thickness, and the primary spray cone angle) can be used to determine the mean diameter of the droplets (SMD) required to fully determine the boundary conditions of fuel injection when modeling combustion processes in combustion chambers of small-sized gas turbine engines.

About the authors

N. I. Gurakov

Samara National Research University

Author for correspondence.
Email: nikgurakov@gmail.com
ORCID iD: 0000-0003-4217-0879

Postgraduate Student of the Department of Thermal Engineering and Thermal Engines

Russian Federation

I. A. Zubrilin

Samara National Research University

Email: zubrilin.ia@ssau.ru
ORCID iD: 0000-0001-5876-8571

Candidate of Science (Engineering), Associate Professor of the Department of Thermal Engineering and Thermal Engines

Russian Federation

M. Hernandez Morales

Samara National Research University

Email: mariohernandezmo_4_2@hotmail.com
ORCID iD: 0000-0002-0592-0530

Postgraduate Student of the Department of Thermal Engineering and Thermal Engines

Russian Federation

D. V. Yakushkin

Samara National Research University

Email: yakushkindv@gmail.com

Student

Russian Federation

A. A. Didenko

Samara National Research University

Email: aanm_didenko@rambler.ru

Candidate of Science (Engineering), Associate Professor of the Department of Thermal Engineering and Thermal Engines

Russian Federation

S. G. Matveev

Samara National Research University

Email: msg@ssau.ru

Candidate of Science (Engineering), Professor of the Department of Thermal Engineering and Thermal Engines

Russian Federation

Yu. V. Komisar

Samara National Research University

Email: komisar.yuv@ssau.ru

Design Engineer of the Department of Aircraft Engine Theory

Russian Federation

References

  1. Lefebvre A.H. Atomization and sprays. New York: Hemisphere, 1989. 434 p.
  2. Lanskiy A.M., Lukachev S.V., Matveev S.G. Rabochiy protsess kamer sgoraniya malorazmernykh GTD [Operating process of combustion chambers of small-sized gas turbine engines]. Samara: Samarskiy Nauchnyy Tsentr RAN Publ., 2009. 334 p.
  3. Rink K.K., Lefebvre A.H. The influences of fuel composition and spray characteristics on nitric oxide formation. Combustion Science and Technology. 1989. V. 68, Iss. 1-3. P. 1-14. doi: 10.1080/00102208908924066
  4. Didenko A.A. Issledovanie kachestva raspylivaniya topliva i ego vliyaniya na kharakteristiki kamer sgoraniya malorazmernykh GTD. Diss. … kand. tekhn. nauk [Investigation of the quality of fuel atomization and its influence on the characteristics of combustion chambers of small-size gas turbine engines. Thesis for a Candidate Degree in Engineering]. Samara, 1996. 267 p.
  5. Dityakin Yu.F., Klyachko L.A., Novikov B.V., Yagodkin V.I. Raspylivanie zhidkostey [Liquid atomization]. Moscow: Mashinostroenie Publ., 1977. 207 p.
  6. Abramovich G.N. Teoriya turbulentnykh struy [Theory of turbulent jets]. Moscow: Nauka Publ., 1984. 716 p.
  7. Xiao W., Huang Y. Improved semiempirical correlation to predict sauter mean diameter for pressure-swirl atomizers. Journal of Propulsion and Power. 2014. V. 30, Iss. 6. P. 1628-1635. doi: 10.2514/1.B35238
  8. Bade K.M., Kalata W., Schick R.J. Experimental and computational study of a spray at multiple injection angles. Proceedings of the 22nd Annual Conference on Liquid Atomization and Spray Systems (May, 2010, Cincinnati, Ohio)
  9. Inoue C., Shimizu A., Watanabe T., Himeno T., Uzawa S. Numerical and experimental investigation on spray flux distribution produced by liquid sheet atomization. Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition (June, 15-19, 2015, Montreal, Canada). V. 4B. doi: 10.1115/GT2015-43364
  10. Kazimardanov M., Zagitov R. Numerical simulation of kerosene atomization in injector of a gas turbine engine. AIP Conference Proceedings. 2019. V. 2125. doi: 10.1063/1.5117432
  11. Kutsenko Yu.G. Metody rascheta i analiza dlya modelirovaniya protsessa raspyla zhidkogo topliva. Materialy X Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Protsessy Goreniya, Teploobmena i Ekologiya Teplovykh Dvigateley» (September, 27-28, 2017, Samara, Russian Federation). Samara: Samara University Publ., 2017. P. 32-33. (In Russ.)
  12. Verma N., ManojKumar K., Ghosh A. Characteristics of aerosol produced by an internal-mix nozzle and its influence on force, residual stress and surface finish in SQCL grinding. Journal of Materials Processing Technology. 2017. V. 240. P. 223-232. doi: 10.1016/j.jmatprotec.2016.09.014
  13. Strokach E.A., Borovik I.N. Numerical simulation of kerosene dispersion process by the centrifugal atomizer. Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering. 2016. No. 3 (108). P. 37-54. (In Russ.). doi: 10.18698/0236-3941-2016-3-37-54
  14. Yun A.A., Krylov B.A. Raschet i modelirovanie turbulentnykh techeniy s teploobmenom, smesheniem, khimicheskimi reaktsiyami i dvukhfaznykh techeniy v programmnom komplekse Fastest-3D [Calculation and modeling of turbulent flows with heat transfer, mixing, chemical reactions and two-phase flows in the Fastest-3D software package]. Moscow: Moscow Aviation Institute Publ., 2007. 116 p.
  15. Hirt C.W., Nichols B.D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics. 1981. V. 39, Iss. 1. P. 201-225. doi: 10.1016/0021-9991(81)90145-5
  16. Hrabry A.I., Zaitsev D.K., Smirnov Ye.M. Numerical simulation of currents with free surface based on VOF method. Transactions of the Krylov State Research Centre. 2013. No. 78 (362). P. 53-64. (In Russ.)
  17. Raushenbakh B.V., Belyy S.A., Bespalov I.V., Borodachev V.Ya., Volynskiy M.S., Prudnikov A.G. Fizicheskie osnovy rabochego protsessa v kamerakh sgoraniya vozdushno-reaktivnykh dvigateley [Basic physics of the operating process in the combustion chambers of air-jet engines]. Moscow: Mashinostroenie Publ., 1964. 526 p.
  18. Gurakov N.I., Zubrilin I.A., Abrashkin V.Y., Hernandez Morales M., Yakushkin D.V., Yastrebov V.V., Kolomzarov O.V., Idrisov D.V. Validation of the VOF method for liquid spray process simulation from a pressure-swirl atomizer. AIP Conference Proceedings. 2020. V. 2304. doi: 10.1063/5.0033854
  19. Halder M.R., Dash S.K., Som S.K. Initiation of air core in a simplex nozzle and the effects of operating and geometrical parameters on its shape and size. Experimental Thermal and Fluid Science. 2002. V. 26, Iss. 8. P. 871-878. doi: 10.1016/s0894-1777(02)00153-x
  20. Rizk N.K., Lefebvre A.H. The influence of liquid film thickness on airblast atomization. Journal of Engineering for Power. 1980. V. 102, Iss. 3. P. 706-710. doi: 10.1115/1.3230329

Copyright (c) 2021 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies