Method for determination of optimal geometrical parameters of a unit cell of X-shaped truss cores

Cite item

Full Text


Recently, in order to develop high-strength lightweight core materials of sandwich structures for multi-functional applications, a large number of truss structures have been created, including pyramidal and tetrahedral truss cores. In this paper, a new truss structure is developed to be used as core material in sandwich panels. The X-shaped truss core consists of discrete hourglass-shaped unit cells formed by the groove-to-groove connection of two flat X-shaped truss elements made by metal plate cutting. In order to determine optimal geometrical parameters of a unit cell of X-shaped truss core, in this work it is proposed to plot the diagrams of relative density versus the angle of the rods for the required values of equivalent critical compression and lateral shear stresses, and for the required values of equivalent compression and shear stiffness of the unit cell of X-shaped truss core. The results show that with the same mechanical characteristics, the relative density of the optimal X-shaped truss core is less than the relative density of optimal pyramidal and tetrahedral truss cores.

About the authors

S. M. Mousavi Safavi

Kazan National Research Technical University named after A.N. Tupolev

Author for correspondence.

Lecturer of the Aircraft Design Department

Russian Federation


  1. Wadley H.N.G. Multifunctional periodic cellular metals. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2006. V. 364, Iss. 1838. P. 31-68. doi: 10.1098/rsta.2005.1697
  2. Gainutdinov V.G., Abdullin I.N., Musavy-Safavy S.M. Calculation of design relative density for rational sandwich structure with truss core. Russian Aeronautics. 2016. V. 59, Iss. 1. P. 64-68. doi: 10.3103/S1068799816010104
  3. Gainutdinov V.G., Mousavi Safavi S.M., Abdullin I.N. Failure conditions of pyramidal and tetrahedral truss core materials. Vestnik KGTU im. A.N. Tupoleva. 2015. No. 2. P. 11-15. (In Russ.)
  4. Abdullin I.N. Calculation and experimental comparative studies of stiffness and strength of sandwich structure with regular pyramidal cells core. Vestnik KGTU im. A.N. Tupoleva. 2015. No. 1. P. 5-11. (In Russ.)
  5. Zok F.W., Waltner S.A., Wei Z., Rathbun H.J., McMeeking R.M., Evans A.G. A protocol for characterizing the structural performance of metallic sandwich panels: application to pyramidal truss cores. International Journal of Solids and Structures. 2004. V. 41, Iss. 22-23. P. 6249-6271. doi: 10.1016/j.ijsolstr.2004.05.045
  6. Queheillalt D.T., Wadley H.N.G. Titanium alloy lattice truss structures. Materials & Design. 2009. V. 30, Iss. 6. P. 1966-1975. doi: 10.1016/j.matdes.2008.09.015
  7. Rathbun H.J., Wei Z., He M.Y., Zok F.W., Evans A.G., Sypeck D.J., Wadley H.N.G. Measurement and simulation of the performance of a lightweight metallic sandwich structure with a tetrahedral truss core. Journal of Applied Mechanics. 2004. V. 71, Iss. 3. P. 368-374. doi: 10.1115/1.1757487
  8. Zschernack C., Wadee M.A., Völlmecke C. Nonlinear buckling of fiber-reinforced unit cells of lattice materials. Composite Structures. 2016. V. 136. P. 217-228. doi: 10.1016/j.compstruct.2015.09.059
  9. Chandler D.L. A new twist on airplane wing design. Available at:
  10. Komarov V.A. Proektirovanie silovykh skhem aviatsionnykh konstruktsiy. V kn.: «Aktual'nye problemy aviatsionnoy nauki i tekhniki». Moscow: Mashinostroenie Publ., 1984. P. 114-129. (In Russ.)
  11. Komarov V.A., Boldyrev A.V., Kuznetsov A.S., Lapteva M.Yu. Aircraft design using a variable density model. Aircraft Engineering and Aerospace Technology. 2012. V. 84, Iss. 3. P. 162-171. doi: 10.1108/00022661211222012
  12. Boldyrev A.V., Komarov V.A. Use of variable-density models in problems of airframe design. Vestnik KGTU im. A.N. Tupoleva. 2010. No. 3. P. 7-12. (In Russ.)
  13. Wang J., Evans A.G., Dharmasena K., Wadley H.N.G. On the performance of truss panels with Kagome cores. International Journal of Solids and Structures. 2003. V. 40, Iss. 25. P. 6981-6988. doi: 10.1016/S0020-7683(03)00349-4
  14. Cote F., Biagi R., Bart-Smith H., Deshpande V.S. Structural response of pyramidal core sandwich columns. International Journal of Solids and Structures. 2007. V. 44, Iss. 10. P. 3533-3556. doi: 10.1016/j.ijsolstr.2006.10.004
  15. Feng L.J., Wu L.Z., Yu G.C. An Hourglass truss lattice structure and its mechanical performances. Materials & Design. 2016. V. 99. P. 581-591. doi: 10.1016/j.matdes.2016.03.100
  16. Dong L., Deshpande V.S., Wadley H.N.G., Mechanical response of Ti–6Al– 4V octet-truss lattice structures. International Journal of Solids and Structures. 2015. V. 60-61. P. 107-124. doi: 10.1016/j.ijsolstr.2015.02.020
  17. Finnegan K., Kooistra G., Wadley H.N.G., Deshpande V.S. The compressive response of carbon fiber composite pyramidal truss sandwich cores. International Journal of Materials Research. 2007. V. 98, Iss. 12. P. 1264-1272. doi: 10.3139/146.101594
  18. Zhang G.Q., Wang B., Ma L., Xiong J., Wu L.Z. Response of sandwich structures with pyramidal truss cores under the compression and impact loading. Composite Structures. 2013. V. 100. P. 451-463. doi: 10.1016/j.compstruct.2013.01.012
  19. Zhang G.Q., Wang B., Ma L., Xiong J., Yang J.S., Wu L.Z. The residual compressive strength of impact-damaged sandwich structures with pyramidal truss cores. Composite Structures. 2013. V. 105. P. 188-198. doi: 10.1016/j.compstruct.2013.05.016
  20. Xiong J., Ghosh R., Ma L., Vaziri A., Wang Y.L., Wu L.Z. Sandwich-walled cylindrical shells with lightweight metallic lattice truss cores and carbon fiber-reinforced composite face sheets. Composites Part A: Applied Science and Manufacturing. 2014. V. 56. P. 226-238. doi: 10.1016/j.compositesa.2013.10.008

Supplementary files

Supplementary Files

Copyright (c) 2019 VESTNIK of Samara University. Aerospace and Mechanical Engineering

License URL:

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies