Development of blend composition of aviation kerosene surrogate for the simulation of workflow of gas turbine engine combustion chamber

Cite item

Full Text


In this paper, the criteria for determining the composition and physicochemical properties of aviation kerosene were formulated. The data on the physicochemical properties of known kerosene surrogates were systematized and classified. The main classes of individual chemical components of aviation kerosene were determined, and the main representatives of these classes which were used in the preparation of surrogates, were investigated. Four- and six-component kerosene substitutes are proposed. The physical properties of the developed surrogates were validated according to the flow characteristics and the spray angle of the flame of a centrifugal fuel nozzle. The dependence of the flame speed on the composition of the mixture of developed kerosene surrogates was determined. The results of determining the composition of combustion products during the combustion of TS-1 brand aviation kerosene and its surrogates in a model combustion chamber were compared.

About the authors

S. G. Matveev

Samara National Research University

Author for correspondence.

Candidate of Science (Engineering)
Assistant Professor, Department of Thermal Engineering and Thermal Engines

Russian Federation


  1. GOST 10227-2013. Jet fuels. Specifications. Мoscow: Standartinform Publ., 2014. 18 p. (In Russ.)
  2. Edwards T., Maurice L.Q. Surrogate mixtures to represent complex aviation and rocket fuels. Journal of Propulsion and Power. 2001. V. 17, Iss. 2. P. 461-466. doi: 10.2514/2.5765
  3. Violi A., Yan S., Eddings E.G., Sarofim A.F., Granata S., Faravelli T., Ranzi E. Experimental formulation and kinetic model for JP-8 surrogate mixtures. Combustion Science and Technology. 2002. V. 174, Iss. 11-12 P. 399-417. doi: 10.1080/00102200215080
  4. Dagaut P., Bakali A.E., Ristori A. The combustion of kerosene: Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels. Fuel. 2006. V. 85, Iss. 7-8. P. 944-956. doi: 10.1016/j.fuel.2005.10.008
  5. Starik A.M., Titova N.S., Torokhov S.A. Kinetics of oxidation and combustion of complex hydrocarbon fuels: Aviation kerosene. Combustion, Explosion and Shock Waves. 2013. V. 49, Iss. 4. P. 392-408. doi: 10.1134/S0010508213040023
  6. Alekseev V.A., Soloviova-Sokolova J.V., Matveev S.S., Chechet I.V., Matveev S.G., Konnov A.A. Laminar burning velocities of n-decane and binary kerosene surrogate mixture. Fuel. 2017. V. 187. P. 429-434. doi: 10.1016/j.fuel.2016.09.085
  7. Honnet S., Seshadri K., Niemann U., Peters N. A surrogate fuel for kerosene. Proceedings of the Combustion Institute. 2009. V. 32, Iss. 1. P. 485-492. doi: 10.1016/j.proci.2008.06.218
  8. Wang Q.-D., Fang Y.-M., Wang F., Li X.-Y. Systematic analysis and reduction of combustion mechanisms for ignition of multi-component kerosene surrogate. Proceedings of the Combustion Institute. 2013. V. 34, Iss. 1. P. 187-195. doi: 10.1016/j.proci.2012.06.011
  9. Wang, H., Dames, E., Sirjean, B., Sheen, D.A., Tango, R., Violi, A., Lai, J.Y.W., Egolfopoulos, F.N., Davidson, D.F., Hanson, R.K., Bowman, C.T., Law, C. K., Tsang, W., Cernansky, N.P., Miller, D.L., Lindstedt R.P. A high-temperature chemical kinetic model of n-alkane (up to n-dodecane), cyclohexane, and methyl-, ethyl-, n-propyl and n-butyl-cyclohexane oxidation at high temperatures, JetSurF version 2.0.
  10. Primary Reference Fuels (PRF) + PAH + Real Fuels + Methyl-Esters (Version 1412, December 2014). Available at:
  11. Ansys Inc. Available at:
  12. Rui X., Kun W., Banerje S., Jiankun Sh., Parise T., Yangye Z., Shengkai W., Movaghar A., Dong Joon L., Ruhua Z., Xu H., Yang G., Tianfeng L., Brezinsky K., Egolfopoulos F.N., Davidson D.F., Hanson R.K., Bowman C.T., Hai W. A physics-based approach to modeling real-fuel combustion chemistry – II. Reaction kinetic models of jet and rocket fuels. Combustion and Flame. 2018. V. 193. P. 520-537. doi: 10.1016/j.combustflame.2018.03.021
  13. Colket M., Edwards T., Williams S., Cernansky N.P., Miller D.L., Egolfopoulos F., Lindstedt P., Seshadri K., Dryer F.L., Law C.K., Friend D., Lenhert D.B., Pitsch H., Sarofim A., Smooke M., Tsang, W. Development of an experimental database and kinetic models for surrogate jet fuels. 45th AIAA Aerospace Sciences Meeting and Exhibit. doi: 10.2514/6.2007-770
  14. Dagaut P., Cathonnet M. The ignition, oxidation, and combustion of kerosene: A review of experimental and kinetic modeling. Progress in Energy and Combustion Science. 2006. V. 32, Iss. 1. P. 48-92. doi: 10.1016/j.pecs.2005.10.003
  15. Dean A.J., Penyazkov O.G., Sevruk K.L., Varatharajan B. Autoignition of surrogate fuels at elevated temperatures and pressures. Proceedings of the Combustion Institute. 2007. V. 31, Iss. 2. P. 2481-2488. doi: 10.1016/j.proci.2006.07.162
  16. Humer S., Frassoldati A., Granata S., Faravelli T., Ranzi E., Seiser R., Seshadri K. Experimental and kinetic modeling study of combustion of JP-8, its surrogates and reference components in laminar nonpremixed flows. Proceedings of the Combustion Institute. 2007. V. 31, Iss 1. Р. 393-400. doi: 10.1016/j.proci.2006.08.008
  17. Lindstedt R.P., Maurice L.Q. Detailed chemical-kinetic model for aviation fuels. Journal of Propulsion and Power. 2000. V. 16, Iss. 2. P. 187-195. doi: 10.2514/2.5582
  18. Slavinskaya N.A., Zizin A., Aigner M. On model design of a surrogate fuel formulation. Journal of Engineering for Gas Turbines and Power. 2010. V. 132, Iss. 11. doi: 10.1115/1.4000593
  19. Strelkova M.I., Kirillov I.A., Potapkin B.V., Safonov A.A., Sukhanov L.P., Umanskiy S.Ya., Deminsky M.A., Dean A.J., Varatharajan B., Tentner A.M. Detailed and reduced mechanisms of jet a combustion at high temperatures. Combustion Science and Technology. 2008. V. 180, Iss. 10-11. P. 1788-1802. doi: 10.1080/00102200802258379
  20. Shafer L., Striebich R., Gomach J., Edwards T. Chemical class composition of commercial jet fuels and other specialty kerosene fuels. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference (Canberra, Australia, November 6-9, 2006). doi: 10.2514/6.2006-7972
  21. Lanskiy A.M., Lukachev S.V., Matveev S.G., Kolomzarov O.V., Matveev S.S. Rabochiy protsess kamer sgoraniya malorazmernykh GTD [Workflow of combustion chambers of small-size gas turbine engines]. Samara: Samarsky Nauchnyy Tsentr RAN Publ., 2016. 260 p.
  22. Chechet I.V. Metodika opredeleniya emissii kantserogennykh aromaticheskikh uglevodorodov kamerami sgoraniya gazoturbinnykh dvigateley i ustanovok. Diss ...cand. techn. nauk [Method of determining emission of carcinogenic aromatic hydrocarbons by combustion chambers of gas turbine engines. Candidate’s dissertation (Engineering Science)]. Samara, 2018. 149 p.

Supplementary files

Supplementary Files

Copyright (c) 2019 VESTNIK of Samara University. Aerospace and Mechanical Engineering

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies