Development of microstructures for the formation of metamaterial properties of piezoelectric elements


Cite item

Abstract

Microcells were designed for subsequent modeling of piezoelectric and optical elements on their basis. The development of piezoelectric and optical elements from microcells was carried out and models were prepared for 3D printing. These designs can be used in practice as piezoacoustic or piezoelectric sensors if piezoelectric powder is added to their composition, for example, in ultrasonic flow meters, or used to create optical structures, for example, diffractive optical elements. The key characteristics and coefficients of piezoelectric structures, such as dielectric constant, conversion coefficient, dielectric loss coefficient, mechanical Q-factor, frequency constant, electromechanical coupling coefficient, piezoelectric charge coefficient, piezoelectric stress coefficient, elastic compliance coefficient, degradation rate, Curie point are analyzed. Elements produced by 3D printing will have properties different from those of elements produced by standard methods. These structures open up new opportunities for the development of ultrasonic research, mechanical engineering and instrument making.

About the authors

V. S. But

Samara National Research University

Author for correspondence.
Email: mister_byt@mail.ru

Postgraduate Student

Russian Federation

A. A. Kobelev

Samara National Research University

Email: kobelevanton89@mail.ru

Postgraduate Student

Russian Federation

S. V. Karpeev

Samara National Research University

Email: karp@smr.ru

Doctor of Science (Phys. & Math.), Professor of the Department of Nanoengineering

Russian Federation

References

  1. Andrianova A.V., Vinogradova I.L., Sultanov A.Kh., Meshkov I.K., Abdrakhmanova G.I., Grakhova E.P., Ishmiyarov A.A., Yantilina L.Z. An approach to synthesizing a 3D nanostructured glass-ceramic material based on intensive high-pressure torsion. Computer Optics. 2016. V. 40, no. 4. P. 489-500. (In Russ.). doi: 10.18287/2412-6179-2016-40-4-489-500
  2. Skidanov R.V., Doskolovich L.L., Ganchevskaya S.V., Blank V.A., Podlipnov V.V., Kazanskiy N.L. Experiment with a diffractive lens with a fixed focus position at several given wavelengths. Computer Optics. 2020. V. 44, no. 1. P. 22-28. (In Russ.). doi: 10.18287/2412-6179-CO-646
  3. Tripathi N., Pavelyev V.S., But V.S., Lebedev S.A., Kumar S., Sharma P., Mishra P., Sovetkina M.A., Fomchenkov S.A., Podlipnov V.V., Platonov V. Analysis and optimization of photonics devices manufacturing technologies based on Carbon Nanotubes. Journal of Physics: Conference Series. 2019. V. 1368, Iss. 2. doi: 10.1088/1742-6596/1368/2/022034
  4. Glushchenko A.G., Glushchenko E.P. The use of metamaterials to control the speed of light propagation in optical structures. Computer Optics. 2017. V. 41, no. 2. P. 202-207. (In Russ.). doi: 10.18287/2412-6179-2017-41-2-202-207
  5. Borminsky S.A., Solntseva A.V., Skvortsov B.V. A method for optoelectronic control of liquid volume in a tank. Computer Optics. 2016. V. 40, no. 4. P. 552-559. (In Russ.). doi: 10.18287/2412-6179-2016-40-4-552-559
  6. Storozhenko D.V., Dzyuba V.P., Kulchin Yu.N., Amosov A.V. Exciton optical nonlinearity of dielectric nanocomposites in weak optical fields. Computer Optics. 2016. V. 40, no. 6. P. 855-862. (In Russ.). doi: 10.18287/2412-6179-2016-40-6-855-862
  7. Volkov A.V., Kazanskiy N.L., Moiseyev O.Ju., Soifer V.A. A method for the diffractive microrelief formation using the layered photoresist growth. Optics and Lasers in Engineering. 1998. V. 29, Iss. 4-5. P. 281-288. doi: 10.1016/S0143-8166(97)00116-4
  8. Skidanov R.V., Moiseev O.Yu., Ganchevskaya S.V. Additive process for fabrication of phased optical diffraction elements. Journal of Optical Technology. 2016. V. 83, Iss. 1. P. 23-25. doi: 10.1364/JOT.83.000023
  9. Miklyaev Y.V., Karpeev S.V., Dyachenko P.N., Pavelyev V.S. Fabrication of three-dimensional photonic crystals by interference lithography with low light absorption. Journal of Modern Optics. 2009. V. 56, Iss. 9. P. 1133-1136. doi: 10.1080/09500340902919469
  10. Dyachenko P.N., Karpeev S.V., Pavelyev V.S. Fabrication and investigation of three-dimensional metallodielectric photonic crystals for infrared range. Computer Optics. 2010. V. 34, no. 4. P. 501-505. (In Russ.)
  11. Dyachenko P.N., Karpeev S.V., Fesik E.V., Miklyaev Y.V., Pavelyev V.S., Malchikov G.D. Fabrication of three-dimensional metallodielectric photonic crystals by interference lithography. Proceedings of SPIE - The International Society for Optical Engineering. 2010. V. 7713. doi: 10.1117/12.853791
  12. Dyachenko P.N., Karpeev S.V., Fesik E.V., Miklyaev Y.V., Pavelyev V.S., Malchikov G.D. The three-dimensional photonic crystals coated by gold nanoparticles. Optics Communications. 2011. V. 284, Iss. 3. P. 885-888. doi: 10.1016/j.optcom.2010.10.006
  13. Dyachenko P.N., Karpeev S.V., Pavelyev V.S. Fabrication and characterization of three-dimensional metallodielectric photonic crystals for infrared spectral region. Optics Communications. 2011. V. 284, Iss. 22. P. 5381-5383. doi: 10.1016/j.optcom.2011.07.062
  14. Cui H., Hensleigh R., Yao D., Maurya D., Priya S., Kumar P., Kang M.G., Priya Sh., Zheng X.R. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Materials. 2019. V. 18, Iss. 3. P. 234-241. doi: 10.1038/s41563-018-0268-1
  15. Yasuda H., Miyazawa Y., Charalampidis E.G., Chong C., Kevrekidis P.G., Yang J. Origami-based impact mitigation via rarefaction solitary wave creation. Science Advances. 2019. V. 5, Iss. 5. doi: 10.1126/sciadv.aau2835
  16. Pavelyev V.S., Borodin S.A., Kazanskiy N.L., Kostyuk G.F., Volkov A.V. Formation of diffractive microrelief on diamond film surface. Optics and Laser Technology. 2007. V. 39, Iss. 6. P. 1234-1238. doi: 10.1016/j.optlastec.2006.08.004
  17. Abul'khanov S.R., Kazanskii N.L., Doskolovich L.L., Kazakova O.Y. Manufacture of diffractive optical elements by cutting on numerically controlled machine tools. Russian Engineering Research. 2011. V. 31, Iss. 12. P. 1268-1272. doi: 10.3103/S1068798X11120033
  18. Bezus E.A., Doskolovich L.L., Kazanskiy N.L. Evanescent-wave interferometric nanoscale photolithography using guided-mode resonant gratings. Microelectronic Engineering. 2011. V. 88, Iss. 2. P. 170-174. doi: 10.1016/j.mee.2010.10.006
  19. Bezus E.A., Doskolovich L.L., Kazanskiy N.L. Interference pattern generation in evanescent electromagnetic waves for nanoscale lithography using waveguide diffraction gratings. Quantum Electronics. 2011. V. 41, Iss. 8. P. 759-764. doi: 10.1070/QE2011v041n08ABEH014500
  20. Kazanskiy N.L., Moiseev O.Y., Poletayev S.D. Microprofile formation by thermal oxidation of molybdenum films. Technical Physics Letters. 2016. V. 42, Iss. 2. P. 164-166. doi: 10.1134/s1063785016020085
  21. Kazanskiy N.L., Stepanenko I.S., Khaimovich A.I., Kravchenko S.V, Byzov E.V, Moiseev M.A. Injectional multilens molding parameters optimization. Computer Optics. 2016. V. 40, no. 2. P. 203-214. (In Russ.). doi: 10.18287/2412-6179-2016-40-2-203-214
  22. Protsenko V.I., Kazanskiy N.L., Serafimovich P.G. Real-time analysis of parameters of multiple object detection systems. Computer Optics. 2015. V. 39, no. 4. P. 582-591. (In Russ.). doi: 10.18287/0134-2452-2015-39-4-582-591
  23. Nikitin V.S., Semyonov E.I, Solostin A.V, Sharov V.G, Chayka S.V. Modeling the ‘Smartlink connection’ performance. Computer Optics. 2016. V. 40, no. 1. P. 64-72. (In Russ.). doi: 10.18287/2412-6179-2016-40-1-64-72
  24. Karpeev S.V., Ustinov A.V., Khonina S.N. Design and analysis of a three-wave diffraction focusing doublet. Computer Optics. 2016. V. 40, no. 2. P. 173-178. (In Russ.). doi: 10.18287/2412-6179-2015-40-2-173-178
  25. But V.S., Kobelev A.A., Karlin E.S., Karpeev S.V. Development and investigation of micro- and nanostructures of metamaterials to form the necessary characteristics and coefficients of piezoelectric elements. Journal of Physics: Conference Series. 2021. V. 1745. doi: 10.1088/1742-6596/1745/1/012008
  26. Tamir T., Zhang S. Resonant scattering by multilayered dielectric gratings. Journal of the Optical Society of America A: Optics and Image Science, and Vision. 1997. V. 14, Iss. 7. P. 1607-1616. doi: 10.1364/JOSAA.14.001607
  27. Wei C., Liu S., Deng D., Shen J., Shao J., Fan Z. Electric field enhancement in guided-mode resonance filters. Optics Letters. 2006. V. 31, Iss. 9. P. 1223-1225. doi: 10.1364/OL.31.001223
  28. Sun T., Ma J., Wang J., Jin Y., He H., Shao J., Fan Z. Electric field distribution in resonant reflection filters under normal incidence. Journal of Optics A: Pure and Applied Optics. 2008. V. 10, Iss. 12. doi: 10.1088/1464-4258/10/12/125003
  29. Difraktsionnaya optika i nanofotonika / pod red. V.A. Soifera [Diffractive optics and nanophotonics / ed. by V.A. Soifer]. Moscow: Fizmatlit Publ., 2014. 608 p.

Copyright (c) 2023 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies