Aspects of simulating stable low-cycle fatigue crack growth in the main parts of aircraft gas turbine engines


Cite item

Abstract

The article presents theoretical basis for the industry-based approach for finite element modeling of stable crack growth in the main parts of an aviation gas turbine engine. An axial compressor disc is used as an example. Parameters of typical FE-models applied are provided. In addition, some effective practices of FE-modeling representing the novelty of this work are described: crack evolution increment under-relaxation and automation of the process of constructing a new crack front. Some simulation results are presented demonstrating implementation of the approach steps and benefits gained from the application of the listed features. Under-relaxation ensures maintaining the stability of a numerical solution for a significantly larger crack increment size. This leads to essential effort decrease as a result of reducing the total number of simulation cycles required. Automatic construction of a new crack front allows significant improvement in crack representation accuracy during the simulation process due to the greater number of points for which crack front evolution is determined.

About the authors

A. A. Ryabov

Sarov Engineering Center Ltd.

Author for correspondence.
Email: alex.ryabov@saec.ru
ORCID iD: 0000-0001-6133-0108

Doctor of Science (Phys. & Math.), Director

Russian Federation

K. Yu. Mokhov

Sarov Engineering Center Ltd.

Email: kmokhov@saec.ru
ORCID iD: 0000-0003-0279-0870

Head of Department

Russian Federation

O. V. Voronkov

Sarov Engineering Center Ltd.

Email: ovoronkov@saec.ru

Candidate of Science (Engineering); Senior Research Associate

Russian Federation

A. Yu. Kudryavtsev

Sarov Engineering Center Ltd.

Email: kudryavtsev@saec.ru
ORCID iD: 0000-0002-0427-5541

Candidate of Science (Phys. & Math.), Head of Department

Russian Federation

A. A. Museev

JSC UEC-Klimov

Email: museev_aa@klimov.ru

Head of Simulation Department

Russian Federation

References

  1. Griffith A.A. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society A. 1921. V. 221, Iss. 582-593 P. 163-198. doi: 10.1098/rsta.1921.0006
  2. Irwin G.R. Analysis of stresses and strains near the end of a crack traversing a plate. Journal of Applied Mechanics. 1957. V. 24, Iss. 3. P. 361-364. doi: 10.1115/1.4011547
  3. Broek D. Elementary engineering fracture mechanics. Netherlands, Leiden, 1974.
  4. Gdoutos E.E., Rodopoulos C.A., Yates J.R. Problems of fracture mechanics and fatigue: A solution guide. London, UK: Springer, 2003. 618 p. doi: 10.1007/978-94-017-2774-7
  5. Anderson T.L. Fracture mechanics. Fundamentals and applications. New York, USA: CRC Press, 2017. 661 p.
  6. Paris P., Erdogan F. A critical analysis of crack propagation laws. Journal of Basic Engineering (Transactions of the ASME). 1963. V. 12, Iss. 4. P. 528-533. doi: 10.1115/1.3656900
  7. Tumanov N.V., Lavrentyeva M.A. Prediction of aero engine discs cyclic life based on modeling the steady growth of low cycle fatigue cracks. Aviation Engines. 2019. No. 1 (2). P. 37-48. (In Russ.). doi: 10.54349/26586061_2019_1_37
  8. Tumanov N.V. Kinetic equation of stable growth for low cycle fatigue cracks. Vestnik of the Samara State Aerospace University. 2014. No. 5 (47), part 1. P. 18-26. (In Russ.). DOI: /10.18287/1998-6629-2014-0-5-1(47)-18-26
  9. Tumanov N.V. Physical and mechanical aspects of stable fatigue crack growth. Aerospace MAI Journal. 2011. V. 18, no. 2. P. 132-136. (In Russ.)
  10. Nozhnitsky Yu.A., Tumanov N.V., Cherkasova S.A., Lavrentyeva M.A. Fractographic methods of risidual life estimation for aero engine disks. Vestnik UGATU. 2011. V. 15, no. 4 (44). P. 39-45. (In Russ.)
  11. Rybin V.V. Bol'shie plasticheskie deformatsii i razrushenie metallov [Large plastic deformations and failure of metals]. Moscow: Metallurgiya Publ., 1986. 224 p.
  12. Zienkiewicz O.C., Taylor R.L., Fox D.D. The finite element method for solid and structural mechanics. Oxford, UK: Butterworth-Heinemann, 2014. 624 p. doi: 10.1016/C2009-0-26332-X
  13. Belytschko T., Liu W.K., Moran B., Elkhodary K.I. Nonlinear finite elements for continua and structures. Chichester, UK: Wiley, 2014. 804 p.
  14. Rege K., Lemu H.G. A review of fatigue crack propagation modelling techniques using FEM and XFEM. IOP Conference Series: Materials Science and Engineering. 2017. V. 276, Iss. 1. doi: 10.1088/1757-899X/276/1/012027
  15. Abaqus unified FEA. Complete solutions for realistic simulation. Available at: https://www.3ds.com/products-services/simulia/products/abaqus/
  16. Moës N., Dolbow J., Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering. 1999. V. 46, Iss. 1. P. 131-150. doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
  17. Khoei A.R. Extended finite element method. Theory and applications. Chichester, UK: Wiley, 2015. 602 p.
  18. Bonet J., Wood R.D. Nonlinear continuum mechanics for finite element analysis. Cambridge, USA: Cambridge University Press, 2008. 315 p.
  19. DS SIMULIA User Assistance 2021. Available at: https:// help.3ds.com/
  20. Cherepanov G.P. The propagation of cracks in a continuous medium. Journal of Applied Mathematics and Mechanics. 1967. V. 31, Iss. 3. P. 503-512. doi: 10.1016/0021-8928(67)90034-2
  21. Rice J.R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics (Transactions ASME). 1964. V. 35, Iss. 2. P. 379-388. doi: 10.1115/1.3601206
  22. ISO/IEC JTC1/SC22/WG21 – The C++ Standards Committee – ISOCPP. Available at: http://www.open-std.org/jtc1/sc22/wg21/

Copyright (c) 2022 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies