A review of hybrid additive manufacturing of metal parts


Cite item

Abstract

This article provides an overview of the latest developments in the field of hybrid additive manufacturing of metal parts. The concept and various kinds of additive manufacturing are discussed.  Special attention is paid to hybridization of additive technologies and various processes of forming: die forging, deep drawing, and others. The background and significance of the technologies, as well as their applicability in production are presented. The combination of additive manufacturing with forming processes is carried out with a dual purpose: to expand the area of application of additive manufacturing and overcome its limitations associated with low productivity, metallurgical defects, surface roughness and lack of dimensional accuracy; new application of traditional forming processes.

About the authors

A. V. Balyakin

Samara National Research University

Author for correspondence.
Email: a_balik@mail.ru
ORCID iD: 0000-0002-1558-1034

Senior Lecturer of the Department of Engine Production Technology

Russian Federation

M. A. Oleynik

Samara National Research University

Email: oleynik1997@mail.ru
ORCID iD: 0000-0003-3837-5396

Postgraduate Student of the Department of Engine Production Technology

Russian Federation

E. P. Zlobin

Samara National Research University

Email: ep.smr@mail.ru
ORCID iD: 0000-0001-8419-7653

Graduate Student

Russian Federation

D. L. Skuratov

Samara National Research University

Email: skuratov-sdl56@ya.ru
ORCID iD: 0000-0002-0256-2205

Doctor of Science (Engineering), Professor of the Department of Engine Production Technology

Russian Federation

References

  1. Zonin G.D. Hybrid systems in areas of production. Tendentsii Razvitiya Nauki i Obrazovaniya. 2021. No. 79, part 1. P. 122-124. (In Russ.). doi: 10.18411/trnio-11-2021-38
  2. Razin D.A. Hybrid technology of additive production as a basis for the development of its future. Sinergiya Nauk. 2020. No. 54. P. 843-850. (In Russ.)
  3. Lorenz K.A., Jones J.B., Wimpenny D.I., Jackson M.R. A review of hybrid manufacturing. Solid Freeform Fabrication Conference Proceedings. 2015. V. 53. P. 96-108.
  4. Lauwers B., Klocke F., Klink A., Tekkaya A.E., Neugebauer R., McIntosh D. Hybrid processes in manufacturing. CIRP Annals - Manufacturing Technology. 2014. V. 63, Iss. 2. P. 561-583. doi: 10.1016/j.cirp.2014.05.003
  5. Kirichek A., Fedonin O., Solov'ev D., Zhirkov A., Khandozhko A., Smolentsev E. Additive-subtractive technologies - effective transition to innovation production. Bulletin of Bryansk State Technical University. 2019. № 8 (81). Р. 4-10. (In Russ.). doi: 10.30987/article_5d6cbe42004700.14416796
  6. Prinz F.B., Weiss L.E. Method and apparatus for fabrication of three-dimensional metal articles by weld deposition. Patent US, no. 5207371, 1993. (Publ. 04.05.1993)
  7. Grigor'yants A.G., Shiganov I.N., Chirkov A.M. Gibridnye tekhnologii lazernoy svarki: ucheb. posobie [Hybrid technologies of laser welding: tutorial]. Moscow: Bauman Moscow State Technical University Publ., 2004. 51 p.
  8. Zhang H., Qian Y., Wang G., Zheng Q. The characteristics of arc beam shaping in hybrid plasma and laser deposition manufacturing. Science in China, Series E: Technological Sciences. 2006. V. 49, Iss. 2. P. 238-247. doi: 10.1007/s11431-006-0238-8
  9. Zhang H.O., Qian Y.P., Wang G.L. Study of rapid and direct thick coating deposition by hybrid plasma-laser manufacturing. Surface and Coatings Technology. 2006. V. 201, Iss. 3-4. P. 1739-1744. doi: 10.1016/j.surfcoat.2006.02.049
  10. Zhang Z., Sun C., Xu X., Liu L. Surface quality and forming characteristics of thin-wall aluminum alloy parts manufactured by laser assisted MIG arc additive manufacturing. International Journal of Lightweight Materials and Manufacture. 2018. V. 1, Iss. 2. P. 89-95. doi: 10.1016/j.ijlmm.2018.03.005
  11. Polishchuk G.M., Sysoev V.K., Vyatlev P.A., Lopota V.A., Turichin G.A., Vartopetov S.K. High-performance laser technologies for space equipment manufacturing. Aerospace Instrument-Making. 2008. No. 4. Р. 52-60. (In Russ.)
  12. Zemlyakov E.V. Teoreticheskie osnovy gibridnoy lazerno-dugovoy obrabotki materialov. Avtoreferat dis. … kand. tekhn. nauk [Theoretical basics of hybrid arc augmented laser welding]. SPb., 2012. 17 р.
  13. Wu D., Liu D., Niu F., Miao Q., Zhao K., Tang B., Bi G., Ma G. Al – Cu alloy fabricated by novel laser-tungsten inert gas hybrid additive manufacturing. Additive Manufacturing. 2020. V. 32. doi: 10.1016/j.addma.2019.100954
  14. Bashin K.A., Torsunov R.A., Semenov S.V.V. Topology optimization methods in aerospace industry. PNRPU Aerospace Engineering Bulletin. 2017. No. 51. Р. 51-61. (In Russ.). doi: 10.15593/2224-9982/2017.51.05
  15. Hybrid technology of additive manufacturing makes a revolution in the production of high-quality metal parts. SAPR i Grafika. 2018. No. 11 (265). Р. 75-77. (In Russ.)
  16. Luo X., Frank M.C. A layer thickness algorithm for additive/subtractive rapid pattern manufacturing. Rapid Prototyping Journal. 2010. V. 16, Iss. 2. P. 100-115. doi: 10.1108/13552541011025825
  17. Fessler J.R., Merz R., Nickel A.H., Prinz F.B. Laser deposition of metals for shape deposition manufacturing. International Solid Freeform Fabrication Symposium (August, 12-14, 1996, Austin, TX, USA). 1996. P. 117-124.
  18. Klocke F., Wirtz H., Meiners W. Direct manufacturing of metal prototypes and prototype tools. International Solid Freeform Fabrication Symposium International Solid Freeform Fabrication Symposium (August, 12-14, 1996, Austin, TX, USA). 1996. P. 141-148.
  19. Kerschbaumer M., Ernst G. Hybrid manufacturing process for rapid high performance tooling combining high-speed milling and laser cladding. Proceedings of the 23rd International Congress on Applications of Lasers and Electro-Optics (October, 4-7, 2004, San Francisco, California, USA). 2004. doi: 10.2351/1.5060234
  20. Sreenathbabu A., Karunakaran K.P., Amarnath C. Statistical process design for hybrid adaptive layer manufacturing. Rapid Prototyping Journal. 2005. V. 11, Iss. 4. P. 235-248. doi: 10.1108/13552540510612929
  21. Song Y.-A., Park S., Choi D., Jee H. 3D welding and milling: Part I–a direct approach for freeform fabrication of metallic prototypes. International Journal of Machine Tools and Manufacture. 2005. V. 45, Iss. 9. P. 1057-1062. doi: 10.1016/j.ijmachtools.2004.11.021
  22. Kovacevic R., Valant M. E. System and method for fabricating or repairing a part. Patent US, no. 7020539, 2006. (Publ. 28.03.2006).
  23. Powder Nozzle. LASERTEC DED: Additive Manufacturing by powder nozzle. Available at: https://en.dmgmori.com/products/machines/additive-manufacturing/powder-nozzle
  24. Mazak INTEGREX i-400 AM. Available at: https://www.mazakusa.com/machines/integrex-i-400am/
  25. Mazak VC-500 AM HYBRID. Available at: https://www.mazakusa.com/machines/vc-500-am/
  26. Manogharan G., Wysk R., Harrysson O., Aman R. AIMS – A metal additive-hybrid manufacturing system: system architecture and attributes. Procedia Manufacturing. 2015. V. 1. P. 273-286. doi: 10.1016/j.promfg.2015.09.021
  27. Matsuura. Corporate Site. Available at: https://www.lumex-matsuura.com/english/lumex-avance-25/
  28. Ahn D.G. Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools-state of the art. International Journal of Precision Engineering and Manufacturing. 2011. V. 12, Iss. 5. P. 925-938. doi: 10.1007/S12541-011-0125-5
  29. D-Hybrid Solutions predlagaet nabor 3D-pechatayushchikh nasadok dlya obrabatyvayushchikh tsentrov s ChPU [3DHybrid solutions offers a set of 3D print pieces for CNC production centers]. Available at: https://3dtoday.ru/blogs/news3dtoday/3d-hybrid-solutions-offers-a-suite-of-3dprinting-nozzles-for-machining
  30. Silva C.M.A., Bragança I.M.F., Cabrita A., Quintino L., Martins P.A.F. Formability of a wire arc deposited aluminium alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering. 2017. V. 39, Iss. 10. P. 4059-4068. doi: 10.1007/s40430-017-0864-z
  31. Trykov Y.P., Shmorgun V.G., Abramenko S.A. Influence of rolling on the properties of titanium - steel composite obtained by explosive welding. Steel in Translation. 2005. V. 35, Iss. 5. Р. 61-62.
  32. Colegrove P.A., Coules H.E., Fairman J., Kashoob T., Filomeno M., Mamash H., Cozzolino L.D. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling. Journal of Materials Processing Technology. 2013. V. 213, Iss. 10. P. 1782-1791. doi: 10.1016/j.jmatprotec.2013.04.012
  33. Zaytsev A.I., Rodionova I.G., Pavlov A.A., Amezhnov A.V., Baklanova O.N., Grishin A.V., Golovanov A.V., Zarkova E.I., Kostin D.L. Sposob polucheniya bimetallicheskikh listov s iznosostoykim naplavlennym sloem [Production of bimetallic ingots with wear proof deposited layer]. Patent RF, no. 2501628, 2013. (Publ. 20.12.2013, bull. no. 35)
  34. Colegrove P.A., Donoghue J., Martina F., Gu J., Prangnell P., Hönnige J. Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components. Scripta Materialia. 2017. V. 135. P. 111-118. doi: 10.1016/j.scriptamat.2016.10.031
  35. Bamberg J., Hess T., Hessert R., Satzger W. Verfahren zum herstellen, reparieren oder austauschen eines bauteils mit verfestigen mittels druckbeaufschlagung. German Patent Application WO 2012152259 A1, 2012.
  36. Sealy M.P., Madireddy G., Williams R.E., Rao P., Toursangsaraki M. Hybrid processes in additive manufacturing. Journal of Manufacturing Science and Engineering. 2018. V. 140, Iss. 6. doi: 10.1115/1.4038644
  37. Uzan N.E., Ramati S., Shneck R., Frage N., Yeheskel O. On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM). Additive Manufacturing. 2018. V. 21. P. 458-464. doi: 10.1016/j.addma.2018.03.030
  38. Sokolov P., Aleshchenko A., Koshmin A., Cheverikin V., Petrovskiy P., Travyanov A., Sova A. Effect of hot rolling on structure and mechanical properties of Ti-6Al-4V alloy parts produced by direct laser deposition. The International Journal of Advanced Manufacturing Technology. 2020. V. 107, Iss. 3-4. P. 1595-1603. doi: 10.1007/s00170-020-05132-0
  39. Duarte V.R., Rodrigues T.A., Schell N., Miranda R.M., Oliveira J.P., Santos T.G. Hot forging wire and arc additive manufacturing (HF-WAAM). Additive Manufacturing. 2020. V. 35. doi: 10.1016/j.addma.2020.101193
  40. Sizova I., Bambach M. Hot workability and microstructure evolution of preforms for forgings produced by additive manufacturing. Procedia Engineering. 2017. V. 207. P. 1170-1175. doi: 10.1016/j.proeng.2017.10.1048
  41. Petrov P.A., Petrov M.A., Fomin V.S., Roberov I.G. Razrabotka gibridnoy tekhnologii proizvodstva izdeliy iz alyuminievykh splavov na osnove sovmeshcheniya additivnoy tekhnologii i tekhnologii izotermicheskoy shtampovki. Sbornik materialov VII Mezhdunarodnoy konferentsii s elementami nauchnoy shkoly dlya molodezhi «Funktsional'nye Nanomaterialy i Vysokochistye Veshchestva» (October, 1-5, 2018, Suzdal). Moscow: IMET RAN Publ., 2018. Р. 481-483. (In Russ.)
  42. Papke T., Junker D., Schmidt M., Kolb T., Merklein M. Bulk metal forming of additively manufactured elements. MATEC Web of Conferences. 2018. V. 190. doi: 10.1051/matecconf/201819003002
  43. Hirtler M., Jedynak A., Sydow B., Sviridov A., Bambach M. Investigation of microstructure and hardness of a rib geometry produced by metal forming and wire-arc additive manufacturing. MATEC Web of Conferences. 2018. V. 90. doi: 10.1051/matecconf/201819002005
  44. Bambach M., Sizova I., Sydow B., Hemes S., Meiners F. Hybrid manufacturing of components from Ti-6Al-4V by metal forming and wire-arc additive manufacturing. Journal of Materials Processing Technology. 2020. V. 282. P. 116-689. doi: 10.1016/j.jmatprotec.2020.116689
  45. Meiners F., Ihne J., Jürgens P., Hemes S., Mathes M., Sizova I., Bambach M., Hama-Saleh R., Weisheit A. New hybrid manufacturing routes combining forging and additive manufacturing to efficiently produce high performance components from Ti-6Al-4V. Procedia Manufacturing. 2020. V. 47. P. 261-267. doi: 10.1016/j.promfg.2020.04.215
  46. Michl D., Sydow B., Bambach M. Ring rolling of pre-forms made by wire-arc additive manufacturing. Procedia Manufacturing. 2020. V. 47. P. 342-348. doi: 10.1016/j.promfg.2020.04.275
  47. Li Y., Rapthadu R. Bending-Additive-Machining hybrid manufacturing of sheet metal structures. ASME 2017 12th International Manufacturing Science and Engineering Conference, MSEC 2017 collocated with the JSME/ASME 2017 6th International Conference on Materials and Processing (June, 4-8, 2017, Los Angeles, USA). doi: 10.1115/MSEC20173062
  48. Butzhammer L., Dubjella P., Huber F. Experimental investigation of a process chain combining sheet metal bending and laser beam melting of Ti-6Al-4V. Proceedings of World of Photonics Congress: Lasers in Manufacturing – LiM (June, 26-29, 2017, Munich, Germany).
  49. Papke T., Dubjella P., Butzhammer L., Huber F., Petrunenko O., Klose D., Schmidt M., Merklein M. Influence of a bending operation on the bonding strength for hybrid parts made of Ti-6Al-4V. Procedia CIRP. 2018. V. 74. P. 290-294. doi: 10.1016/j.procir.2018.08.113
  50. Rosenthal S., Hahn M., Tekkaya A.E. Simulation approach for the three-point plastic bending of additively manufactured Hastelloy X sheets. Procedia Manufacturing. 2019. V. 34. P. 475-481. doi: 10.1016/j.promfg.2019.06.201
  51. Ahuja B., Schaub A., Karg M., Schmidt R., Merklein M., Schmidt M. High power laser beam melting of Ti-6Al-4V on formed sheet metal to achieve hybrid structures. Proceedings of SPIE - The International Society for Optical Engineering. 2015. V. 9353. doi: 10.1117/12.2082919
  52. Bambach M.D., Bambach M., Sviridov A., Weiss S. New process chains involving additive manufacturing and metal forming – a chance for saving energy? Procedia Engineering. 2017. V. 207. P. 1176-1181. doi: 10.1016/j.proeng.2017.10.1049
  53. Hölker R., Jäger A., Ben Khalifa N., Tekkaya A.E. Process and apparatus for the combined manufacturing of workpieces by incremental sheet metal forming and manufacturing methods in one set-up. German Patent DE 10 201414202.7, 2014.
  54. Pragana J.P.M., Cristino V.A.M., Bragança I.M.F., Silva C.M.A., Martins P.A.F. Integration of forming operations on hybrid additive manufacturing systems based on fusion welding. International Journal of Precision Engineering and Manufacturing – Green Technology. 2020. V. 7, Iss. 3. P. 595-607. doi: 10.1007/s40684-019-00152-y
  55. Shirizly A., Dolev O. From wire to seamless flow-formed tube: leveraging the combination of wire arc additive manufacturing and metal forming. JOM. 2019. V. 71, Iss. 2. P. 709-717. doi: 10.1007/s11837-018-3200-x

Copyright (c) 2022 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies