УДК 62-144.4

DOI: 10.18287/2541-7533-2021-20-3-97-109

РАЗРАБОТКА МЕТОДИКИ РАСЧЁТА РАБОЧЕГО ПРОЦЕССА И МОЩНОСТНЫХ ХАРАКТЕРИСТИК МАЛОРАЗМЕРНОГО ДВУХТАКТНОГО ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

© 2021

В. В. Бирюк	профессор, доктор технических наук, заместитель заведующего кафедрой теплотехники и тепловых двигателей; Самарский национальный исследовательский университет имени академика С.П. Королёва; <u>teplotex_ssau@bk.ru</u>
А. А. Горшкалев	старший преподаватель кафедры теплотехники и тепловых двигателей; Самарский национальный исследовательский университет имени академика С.П. Королёва; <u>Agorsh@bk.ru</u>
М. О. Захаров	аспирант; Самарский национальный исследовательский университет имени академика С.П. Королёва; mzakharob95@gmail.com
В. Л. Ларин	аспирант; Самарский национальный исследовательский университет имени академика С.П. Королёва; <u>vlad-larin@mail.ru</u>

На основании имеющихся теоретических выкладок, методик расчёта рабочего процесса и мощностных характеристик двигателей внутреннего сгорания И проведённых экспериментальных исследований была разработана и апробирована методика расчёта рабочего процесса для малоразмерных двухтактных двигателей внутреннего сгорания. В ходе выполнения данной работы были получены следующие результаты: параметры рабочего процесса и мощностные характеристики малоразмерного двухтактного двигателя внутреннего сгорания; проведено сравнение параметров, полученных расчётным путём в ходе исследования двигателя Evolution 20GX2, с результатами экспериментального исследования. По результатам сравнения были выявлены отклонения в величинах параметров исследуемого двигателя от результатов экспериментального исследования на режимах максимальной мощности и максимальной частоты вращения.

Двигатель внутреннего сгорания; двигатель внутреннего сгорания двухтактный; расчёт тепловой; баланс тепловой; характеристика внешняя скоростная

<u>Шитирование</u>: Бирюк В.В., Горшкалев А.А., Захаров М.О., Ларин В.Л. Разработка методики расчёта рабочего процесса и мощностных характеристик малоразмерного двухтактного двигателя внутреннего сгорания // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. 2021. Т. 20, № 3. С. 97-109. DOI: 10.18287/2541-7533-2021-20-3-97-109

Введение

Создание новой модели двигателя внутреннего сгорания (ДВС) является сложным и трудоёмким процессом, который задействует в себе множество областей науки и техники, а также специалистов различных областей и направленностей. Немаловажным этапом создания новой модели двигателя является его испытание на соответствие с техническим заданием на его проектирование.

В настоящее время при производстве малоразмерных авиамодельных двухтактных двигателей внутреннего сгорания в большинстве случаев производители пренебрегают испытаниями двигателей с целью сокращения затрат на производство и снижение себестоимости продукции. Целью работы является разработка полноценной и логически выстроенной методики расчёта рабочего процесса и мощностных характеристик малоразмерного двухтактного двигателя внутреннего сгорания и последующая верификация полученных данных с параметрами реального прототипа двигателя.

Двухтактные двигатели внутреннего сгорания для летательных аппаратов являются одними из самых малоразмерных представителей данного типа двигателей. Они характеризуются малыми габаритами, малой массой и простотой конструкцией. Все это обусловлено сферой использования данного типа двигателей. Как известно, в авиации борются за снижение массы деталей и узлов, повышение надёжности используемых агрегатов и снижение расхода топлива силовой установкой.

В большинстве своём малоразмерные ДВС имеют одноцилиндровое исполнение с воздушной системой охлаждения. Конструктивной особенностью малоразмерных двухтактных ДВС для ЛА является наличие кривошипно-камерной продувки, которая обеспечивает предварительное сжатие рабочей смеси. Двигатели данного типа относятся к типу двигателей с наддувом. Это делается для увеличения скорости подачи смеси, а также для улучшения продувки цилиндра двигателей от продуктов сгорания.

В качестве прототипа для разработки методики расчёта рабочего процесса и мощностных характеристик малоразмерного двухтактного двигателя внутреннего сгорания был выбран авиамодельный двигатель Evolution 20GX2. Данный двигатель является двухтактным, одноцилиндровым с кривошипно-шатунной камерой и петлевой системой газообмена. Внешний вид двигателя представлен на рис. 1.

Основные характеристики двигателя Evolution 20GX2:

- диаметр поршня 30,5 мм;
- ход поршня 27,9 мм;
- количество цилиндров один;
- рабочий объём 20,0 см³;
- диапазон используемых пропеллеров 14×6 ... 17×8;
- горючее бензин с октановым числом 92;
- диапазон оборотов в минуту 1800 ... 10 000;
- режим максимальной мощности 8850 об/мин с винтом 14×6;
- масса двигателя 0,958 кг [1].

Рис. 1. Внешний вид двигателя Evolution 20GX2

Указанные производителем параметры двигателя были использованы в работе при тепловом расчёте.

Тепловой расчёт

При разработке методики теплового расчёта малоразмерного двухтактного двигателя внутреннего сгорания Evolution20GX2 были использованы имеющиеся наработки, представленные в [2 – 4], а также были произведены дополнительные исследования для определения характеристик двухтактных ДВС.

При проведении теплового расчёта двухтактного двигателя были выбраны характерные режимы, при работе на которых возможно получить максимальные характеристики двигателя, а именно:

1) режим максимального крутящего момента $n_{_{KD,M}} = 7500$ об/мин;

2) режим максимальной мощности двигателя n = 8850 об/мин;

3) режим максимальной частоты вращения коленчатого вала при $n_{\rm max} = 9300$ об/мин.

Исходные данные для теплового расчёта двухтактного двигателя внутреннего сгорания Evolution20GX2:

- обороты максимальной мощности 8850 об/мин;
- геометрическая степень сжатия $\varepsilon = 8,5;$
- доля хода поршня, занятая окнами для продувки $\psi = 0,32;$
- давление окружающей среды $p_r = 0,101325$ МПа;
- температура окружающей среды $T_0 = 290$ К;
- коэффициент избытка воздуха 1;
- коэффициент полезного тепловыделения 0,9;
- коэффициент остаточных газов 0,2;
- давление остаточных газов $p_0 = 0,101325$ МПа;
- температура остаточных газов 943 К;
- подогрев свежего заряда от стенок 20 К.

Результаты расчёта представлены в табл. 1 – 11.

Расчёт параметров рабочего тела

В соответствии с указаниями производителя при расчёте используются характеристики бензина АИ-92. Расчёт основных параметров произведён по рекомендациям [2] при внедрении специальных параметров, характерных для двухтактных ДВС. В результате расчёта параметров рабочего тела на выбранных режимах были получены следующие параметры: M_1 – количество горючей смеси, кмоль гор. см./кг топл.; M_{CO_2} , M_{H_2O} , M_{CO} , M_{H_2} , M_{N_2} – количество отдельных компонентов продуктов сгорания, кмоль/кг топл.; M_2 – общее количество продуктов сгорания, кмоль пр. сг./кг топл. Результаты расчёта представлены в табл. 1.

n, мин ⁻¹	α	M_{1}	$M_{\rm CO_2}$	$M_{ m H_2O}$	$M_{\rm CO}$	$M_{_{ m H_2}}$	$M_{_{ m N_2}}$	M_2
7500	1	0,526	0,07125	0,0725	0	0	0,40933	0,55308
8850	1	0,526	0,07125	0,0725	0	0	0,40933	0,55308
9300	1	0,526	0,07125	0,0725	0	0	0,40933	0,55308

Таблица 1. Параметры рабочего тела

Предварительный расчёт параметров двигателя

Давление продувки *p*_{*k*} из-за особенностей конструкции двигателя, а именно наличия кривошипно-шатунной камеры, принимается равным:

$$p_k = 1,5 p_0 = 1,5 \cdot 0,101325 = 0,151987 \text{ M}\Pi a$$

Действительная степень сжатия двигателя:

$$\varepsilon_{\pi} = \varepsilon - \psi(\varepsilon - 1) = 8, 5 - 0, 32(8, 5 - 1) = 6, 1,$$

где ε – степень сжатия, ψ – отношение высоты продувочных окон к ходу поршня.

При неизменных значениях ε температура остаточных газов T_r практически линейно возрастает с увеличением скоростного режима, но уменьшается при обогащении смеси. Примем для двигателя с карбюратором и кривошипно-камерной продувкой давление остаточных газов $p_r = p_0 = 0,101325 \text{ MIa}$, температура остаточных газов $T_r = 1060 \text{ K}$. Показатель политропы сжатия для двигателей с кривошипно-шатунной камерой принимаем равным n = 1,5 в соответствии с рекомендациями [3].

Процесс впуска

Расчёт процесса впуска производился по рекомендациям [4] при внедрении специальных параметров, характерных для двухтактных ДВС.

Температура нагрева свежего заряда с целью получения более высокого коэффициента наполнения на скоростных режимах, равных номинальным (n), принимается для карбюраторного двигателя $\Delta T = 20^{\circ}$ С. Для режима максимального крутящего момента $(n_{_{KP.M.}})$ температура нагрева свежего заряда принимается равной $\Delta T = 18^{\circ}$ С, так как двигатель имеет меньшую рабочую температуру, чем на номинальном режиме. Для режима максимальной мощности $(n_{_{max}})$ температура нагрева свежего заряда принимается равной $\Delta T = 22^{\circ}$ С, так как двигатель имеет большую рабочую температуру, чем на номинальном режиме. Температура окружающего воздуха перед органами впуска:

$$T_{K} = T_{0} \left(\frac{p_{K}}{p_{0}}\right)^{\frac{n-1}{n}} = 290 \left(\frac{0.151987}{0.101325}\right)^{\frac{1.5-1}{1.5}} = 332 \,\mathrm{K} \,.$$

Давление в начале такта сжатия:

$$p_a = 0.9 p_K = 0.9 \cdot 0.152 = 0.1368$$
 MITa.

Коэффициент наполнения цилиндра двигателя:

$$\eta_{\nu} = \frac{\varepsilon_{\pi} p_a T_K}{\left(\varepsilon_{\pi} - 1\right) p_K \left(T_K + \Delta T + \gamma_r T_r\right)} = \frac{6.1}{6.1 - 1} \cdot \frac{0.1368}{0.151987} \cdot \frac{332}{332 + 20 + 0.22 \cdot 1060} = 0.6111,$$

где γ_r – коэффициент остаточных газов.

Температура рабочего тела в начале такта сжатия:

$$T_a = \frac{T_K + \Delta T + \gamma_r T_r}{1 + \gamma_r} = \frac{332 + 20 + 0,22 \cdot 1060}{1 + 0,22} = 480 \,\mathrm{K} \,.$$

Результаты расчёта параметров процессов впуска и газообмена на разных режимах представлены в табл. 2.

таблица 2. процесс внуска и газобомена	Таблица 2.	Процесс	впуска	ига	азообмена
--	------------	---------	--------	-----	-----------

<i>п</i> , мин ⁻¹	α	T_r , K	<i>р</i> _r , МПа	ΔT , МПа	<i>р_а</i> , МПа	Ϋ́r	T_a , K	η_{v}
7500	1	1050	0,101	18	0,137	0,2	467	0,6382
8850	1	1060	0,101	20	0,137	0,22	480	0,6111
9300	1	1070	0,101	22	0,137	0,24	493	0,5851

Процесс сжатия

При работе бензинового двигателя средний показатель политропы n_1 принимается несколько меньше показателя адиабаты k_1 , выбранного по номограмме. При выборе учитывается, что с уменьшением частоты вращения коленчатого вала теплоотдача в стенки цилиндров от газов увеличивается, а n_1 уменьшается по сравнению с k_1 более значительно. При $\alpha = 1$ и $T_a = 480$ К принимаем $n_1 = 1,364$ по номограмме определения k_1 [2]. Расчёт основных параметров процесса сжатия произведён с использованием данных работы [2] при внедрении специальных параметров, характерных для двухтактных ДВС. В результате расчёта основных параметров процесса сжатия на выбранных режимах были получены следующие параметры: $(mc_V)_{t_0}^{t_c}$, $(mc_V'')_{t_0}^{t_c}$ – средние мольные теплоёмкости топливно-воздушной смеси, кДж/(кмоль-град); p_c – давление в конце процесса сжатия; $t_c(T_c)$ – температура в конце процесса сжатия. Результаты расчёта представлены в табл. 3.

n, мин ⁻¹	k_1	n_1	p_c , МПа	<i>Т</i> _c , К	t_c ,°C	$\left(\mathit{mc}_{\scriptscriptstyle V} ight)_{t_0}^{t_c}$	$\left(mc_{V}^{\prime} ight)_{t_{0}}^{t_{c}}$	$\left(mc_{V}^{\prime\prime} ight)_{t_{0}}^{t_{c}}$
7500	1,3655	1,3655	1,616	904	631	22,2638	22,6731	24,7195
8850	1,364	1,364	1,612	926	653	22,3236	22,7734	24,8181
9300	1,3615	1,3615	1,604	947	674	22,3780	22,8677	24,9079

Таблица 3. Процесс сжатия

Процесс сгорания

Процесс сгорания в двухтактных двигателях протекает идентично четырёхтактным. Расчёт производился по рекомендациям [2] с использованием специальных параметров, характерных для двухтактных ДВС. В результате расчёта параметров процесса сгорания на выбранных были получены следующие параметры: $\mu_0(\mu)$ – коэффициент молекулярного изменения горючей (рабочей) смеси; ΔH , $H_{pa\delta.cm}$ – теплота сгорания рабочей смеси; $(mc'_V)_{t_0}^{t_z}$ – средняя мольная теплоёмкость продуктов сгорания в двигателе; ξ_z – коэффициент использования теплоты; $t_z(T_z)$ – температура в конце видимого процесса сгорания; p_z – максимальное давление сгорания теоретическое; p_{z_A} – максимальное давление сгорания действительное; λ – степень повышения давления. Результаты расчёта представлены в табл. 4.

Параметры	μ_0	μ	$\Delta H_{_U}$	Н _{раб.см}	(mc	$V_V V_{t_0}^{t_z}$
7500	1,0524	1,0437	0	68683,8	24,567+0,	$0020773 t_z$
8850	1,0524	1,0423	0	67557,9	24,567+0,	$0020773 t_z$
9300	1,0524	1,0422	0	66468,3	24,567+0,	$0020773 t_z$
Параметры	ξ_z	$t_z, ^{\circ}\mathrm{C}$	T_z, \mathbf{K}	p_z , МПа	$p_{z_{\mathrm{A}}},$ МПа	λ
7500	0,9	2458	2731	5,096	4,332	3,1538
8850	0,9	2447	2720	4,963	4,195	3,0627
9300	0,9	2436	2709	4,784	4,066	2,9819

Таблица 4.	Процесс	горения
------------	---------	---------

Процесс расширения и выпуска

Степень предварительного расширения для карбюраторных двигателей $\rho = 1$. Степень последующего расширения для карбюраторных двигателей $\delta = \varepsilon_{\alpha}$. При $\alpha = 1$ и $T_z = 2720$ К принимаем средний показатель политропы расширения $n_2 = 1,2505$ по номограмме определения среднего показателя адиабаты сжатия k_2 [2]. Температура в конце расширения:

$$T_b = \frac{T_z}{\delta^{n_2 - 1}} = \frac{2720}{6, 1^{1,2505 - 1}} = 1729 \,\mathrm{K} \;.$$

Давление в конце расширения:

$$p_b = \frac{p_{z_a}}{\delta^{n_2}} = \frac{4,195}{6,1^{1,2505}} = 0,437 \,\mathrm{M\Pi a} \;.$$

Температура остаточных газов:

$$T_r = \frac{T_b}{\sqrt[3]{\frac{p_b}{p_r}}} = \frac{1729}{\sqrt[3]{\frac{0,437}{0,101325}}} = 1062 \,\mathrm{K} \,.$$

Результаты расчёта параметров процессов расширения и выпуска на разных режимах представлены в табл. 5.

Таблица 5. Процесс расширения и выпуска

$n,$ мин $^{-1}$	<i>k</i> ₂	<i>n</i> ₂	$p_b, M\Pi a$	T_b, \mathbf{K}	T_r, \mathbf{K}	$\Delta T,\%$
7500	1,2505	1,2505	0,451	1736	1055	0,4779
8850	1,2505	1,2505	0,437	1729	1062	0,2108
9300	1,251	1,251	0,423	1721	1068	-0,1504

Индикаторные параметры рабочего цикла

Теоретическое среднее индикаторное давление:

$$p_i' = \frac{P_c}{6, 1-1} \left[\frac{\lambda}{n_2 - 1} \left(1 - \frac{1}{\varepsilon^{n_2 - 1}} \right) - \frac{1}{n_1 - 1} \left(1 - \frac{1}{\varepsilon^{n_1 - 1}} \right) \right] = \frac{1,612}{6, 1-1} \left[\frac{3,0627}{1,2505 - 1} \left(1 - \frac{1}{6, 1^{1,2505 - 1}} \right) - \frac{1}{1,364 - 1} \left(1 - \frac{1}{6, 1^{1,364 - 1}} \right) \right] = 0,989 \,\mathrm{M}\Pi\mathrm{a}.$$

Среднее индикаторное давление:

$$p_i = \varphi_u p'_i = 0,94 \cdot 0,989 = 0,929 \,\mathrm{M\Pi a}$$
,

где φ_u – коэффициент полноты диаграммы.

Индикаторный КПД и индикаторный удельный расход топлива:

$$\eta_i = \frac{p_i l_0 \alpha}{H_u \rho_0 \eta_V} = \frac{0,929 \cdot 14,957 \cdot 1}{43,314 \cdot 1,2174 \cdot 0,6107} = 0,4317;$$
$$g_i = \frac{3600}{H_u \eta_i} = \frac{3,6}{43,314 \cdot 0,4317} = 0,1925 \text{ kg/kBt y.}$$

где *H*_{*u*} – низшая теплота сгорания топлива.

Эффективные показатели двигателя

Расчёт эффективных показателей для двухтактных двигателей производится аналогично расчёту для четырёхтактных. Вычисление производилось по рекомендациям [2] при использовании специальных параметров, характерных для двухтактных ДВС. В результате расчёта индикаторных параметров и эффективных показателей были получены следующие параметры: p'_i – среднее теоретическое индикаторное давление; p_i – среднее индикаторное давление; η_i – индикаторный коэффициент полезного действия; g_i – индикаторный удельный расход топлива; $v_{n.cp}$ – средняя скорость поршня; $p_{_{\rm M}}$ – давление механических потерь; p_e – среднее эффективный коэффициент полезного действия; g_e – эффективный удельный расход топлива. Результаты расчёта параметров на выбранных режимах представлены в табл. 6.

<i>n</i> , мин ⁻¹	7500	8850	9300
p_i' , МПа	1,034	0,989	0,946
p_i , МПа	0,972	0,929	0,889
η_{i}	0,4319	0,4316	0,4310
$g_i,$ кг/(кВт · ч)	0,1924	0,1925	0,1928
υ _{п.ср.} , м/с	7,02	8,25	8,66
$p_{_{\rm M}},$ МПа	0,113	0,128	0,132
$p_{ m e}, { m M}\Pi$ а	0,859	0,802	0,757
$\eta_{_{ m M}}$	0,8834	0,8626	0,8511
$\eta_{_e}$	0,3816	0,3724	0,367
$g_e, \kappa \Gamma / (\kappa B \mathrm{T} \cdot \mathrm{y})$	0,2178	0,2232	0,2266

Таблица 6. Индикаторные параметры и эффективные показатели двигателя

Основные параметры цилиндра и двигателя

Расчёт основных параметров цилиндра и двигателя для двухтактных двигателей производится аналогично расчёту для четырёхтактных. Расчёт производился с использованием материалов работы [2] при внедрении специальных параметров, характерных для двухтактных ДВС. В результате расчёта основных параметров цилиндра и двигателя были получены следующие: F_n – площадь поршня; V_n – объем двигателя литровый; N_n – литровая мощность; N_e – эффективная мощность; M_e – эффективный крутящий момент; G_r – часовой расход топлива. Результаты расчёта параметров на разных режимах представлены в табл. 7.

n, мин ⁻¹	F_{π}, cm^2	<i>V</i> _л , л	<i>N</i> _л , кВт/л	$N_{\rm e}, \kappa {\rm Bt}/{\rm J}$	$M_e, \mathbf{H} \cdot \mathbf{m}$	$G_{_{\mathrm{T}}},$ кг/ч
7500			107,9	1,49	1,89	0,325
8850	7,30	0,0138	118,5	1,63	1,76	0,365
9300			117,4	1,62	1,66	0,367

Таблица 7. Основные параметры цилиндра и двигателя

Построение индикаторной диаграммы

Для номинального режима двигателя, то есть при $N_e = 1,63 \,\mathrm{kBt}$ и $n = 8850 \,\mathrm{of}/\mathrm{muh}$, построена индикаторная диаграмма карбюраторного двигателя.

Были посчитаны ординаты в приведённом масштабе, соответствующие рабочему объёму цилиндра и объёму камеры сгорания, максимальное значение высоты диаграммы (точка z) и ординаты характерных точек. Масштабы диаграммы: масштаб хода поршня $M_s = 1$ мм в мм, масштаб давлений $M_p = 0,1$ МПа в мм. Величины в приведённом масштабе, соответствующие рабочему объёму цилиндра и объёму камеры сгорания, где OX – положение поршня, соответствующее объёму; OB – рабочий объём цилиндра и камеры сгорания в приведённом масштабе, p_x – ординаты характерных точек.

Результаты расчёта точек политропных процессов сжатия и расширения приведены в табл. 8.

	OV	, MM $\frac{OB}{OX}$	Процесс	с сжатия	Процесс расширения	
№ точек	ОХ, ММ		$\left(\frac{OB}{OX}\right)^{n_1}$	p_x , МПа	$\left(\frac{OB}{OX}\right)^{n_2}$	p_x , МПа
1	3,72	6,10	11,73	1,60	9,56	4,18
2	5	4,52	7,84	1,07	6,60	2,89
3	7	3,23	4,95	0,68	4,34	1,90
4	10	2,26	3,04	0,42	2,78	1,21
5	14	1,62	1,92	0,26	1,82	0,80
6	19	1,19	1,27	0,17	1,24	0,54
7	22,62	1	1	0,14	1	0,44
8	31,62	0,72	0,63	0,09	0,66	0,29

Таблица 8. Результаты расчёта точек политропных процессов

Значение среднего теоретического индикаторного давления:

$$p'_i = \frac{F_1 M_p}{100 AB} = \frac{5,18 \cdot 0,05}{27,9 \cdot 100} = 0,928 \,\mathrm{MHa},$$

где $F_1 = 5,18 \text{ см}^2$ – площадь диаграммы *rczbr*, представленная на рис. 2. Величина $p'_i = 0,989 \text{ МПа}$, полученная в тепловом расчёте, приблизительно равна $p'_i = 0,928 \text{ МПа}$, полученной графически. Положение точек r',a',a'',c',f и b' (рис. 2) определяют по формуле для перемещения поршня:

$$AX = \frac{AB}{2} \left[\left(1 - \cos \varphi \right) + \frac{\lambda}{4} \left(1 - \cos 2\varphi \right) \right],$$

где λ – отношение радиуса кривошипа к длине шатуна.

Рис. 2. Внешний вид индикаторной диаграммы

Выбор величины λ производится при проведении динамического расчёта, а при построении индикаторной диаграммы предварительно принимается $\lambda = 0,285$ [4]. Расчёты ординат точек r',a',a'',c',f и b' (рис. 2) сведены в табл. 9.

Положение точки с" на индикаторной диаграмме определяется из выражения:

$$p_{c''} = 1,15 p_c = 1,15 \cdot 1,612 = 1,853 \,\mathrm{M\Pi a}$$
.

Положение точки $z_{\scriptscriptstyle\partial}$ на индикаторной диаграмме определяется из выражения:

$$p_{z_{2}} = 0.85 p_{z} = 0.85 \cdot 5.074 = 4.313 \,\mathrm{MHa}$$
.

Обозначение точек	Положение точек	$arphi^0$	$(1-\cos\varphi)+\frac{\lambda}{4}(1-\cos 2\varphi)$	Расстояние точек от ВМТ (<i>AX</i>),мм
<i>b</i> ′	77,3 до НМТ	102,7	1,355	18,9
<i>a</i> ′	62,8 до НМТ	117,2	1,569	21,9
<i>a</i> "	62,8 после НМТ	117,2	1,569	21,9
r'	77,3 после НМТ	102,7	1,355	18,9
<i>c</i> ′	35 до ВМТ	35	0,223	3,1
f	30 до ВМТ	30	0,166	2,3

Таблица 9. Ординаты точек

Тепловой баланс двигателя

Тепловым балансом двигателя называется распределение теплоты, выделившейся в результате сгорания топлива в цилиндре, на полезно затраченную и на неиспользуемую теплоту, обусловленную тепловыми потерями. Расчёт теплового баланса для двухтактных двигателей производится аналогично расчёту для четырёхтактных двигателей. Расчёт производился с использованием рекомендаций [2] при внедрении специальных параметров, характерных для двухтактных ДВС.

Значения составляющих теплового баланса на разных режимах работы двигателя представлены в табл. 10. Составляющие теплового баланса двигателя представлены на рис. 3.

Рис. 3. Зависимость составляющих теплового баланса от частоты вращения коленчатого вала

Таблица 10. Состан	ляющие теплового баланса
--------------------	--------------------------

	Режимы работы, об/мин			
Составляющие теплового оаланса	7500	8850	9300	
Теплота, эквивалентная эффективной работе двигателя, q_e	38,16	37,24	36,68	
Теплота, передаваемая окружающей среде, $q_{\scriptscriptstyle \rm B}$	26,00	25,02	24,00	
Теплота, потерянная с отработавшими газами, q _г	33,03	33,37	33,68	
Неучтённые потери теплоты, q_{ocm}	2,81	4,37	5,64	
Общее количество теплоты, q_o	100	100	100	

Расчёт внешней скоростной характеристики

На основании полученных значений эффективной мощности, эффективного крутящего момента, удельного эффективного расхода топлива, часового расхода топлива, коэффициента наполнения и коэффициента избытка воздуха представленного выше теплового расчёта, проведённого для трёх скоростных режимов работы двухтактного одноцилиндрового бензинового двигателя, получены и сведены в табл. 11 необходимые величины параметров для построения внешних скоростных характеристик (BCX). Внешний вид BCX двухтактного ДВС представлен на рис. 4.

Частота вращения КВ, об/мин	N_e , кВт	$M_{_{\kappa p}}, \mathrm{H} \cdot \mathrm{M}$	$g_e,$ кг/(кВт·ч)	$G_{_T},$ кг/ч	$\eta_{\scriptscriptstyle V}$	α
7500	1,49	1,89	0,2178	0,325	0,6382	1
8850	1,63	1,76	0,2232	0,365	0,6107	1
9300	1,62	1,66	0,2266	0,367	0,5851	1

Таблица 11. ВСХ теплового расчёта двигателя

Рис. 4. Внешняя скоростная характеристика двигателя

Анализ полученных результатов

Для оценки эффективности разработанной методики было произведено сравнение полученных расчётных путём мощностных характеристик малоразмерного двухтактного двигателя внутреннего сгорания EVOLUTION 20GX2 с результатами экспериментального исследования. Внешний вид сравнения внешних скоростных характеристик представлен на рис. 5.

Заключение

В данной работе представлены результаты формирования методики расчёта рабочего процесса и мощностных характеристик малоразмерных двухтактных двигателей внутреннего сгорания.

Оценка предлагаемой методики была произведена при сравнении полученных расчётным путём характеристик двигателя Evolution 20GX2 с результатами экспериментального исследования. Результаты расчёта погрешности полученных параметров исследуемого двигателя теоретическим путём в сравнении с экспериментальным данными представлены в табл. 12.

<i>n</i> ,	Эффективная мощность N_e , кВт			Эффективны	й крутящий моме	нт $M_e, \mathbf{H} \cdot \mathbf{M}$
об/мин	Результаты	Теоретический	Отклонение,	Результаты	Теоретический	Отклонение,
	эксперимента	расчёт	%	эксперимента	расчёт	%
7500	0,999	1,49	33	1,265	1,89	33
8850	1,537	1,63	5,7	1,656	1,76	5,9
9300	1,498	1,62	7,5	1,537	1,66	7,4

Таблица 12. Результат расчёта погрешностей

Исходя из полученных результатов, можно сделать следующие выводы:

 по результатам расчётов по предлагаемой методике расчёта рабочего процесса и мощностных характеристик малоразмерного двухтактного ДВС были получены все необходимые параметры;

– для оценки результатов расчётов по предлагаемой методике было проведено сравнение параметров, полученных расчётным путём в ходе исследования двигателя Evolution 20GX2, с результатами экспериментального исследования. По результатам сравнения были выявлены отклонения в величинах параметров исследуемого двигателя от результатов экспериментального исследования на режимах максимальной мощности и максимальной частоты вращения в диапазоне от 5,7 до 7,5%. Результаты, полученные на режиме максимального крутящего момента, требуют проведения дополнительных исследований для поиска причины расхождения данных;

– для проведения дальнейших исследований и модернизации разработанной методики необходимо проведение расчётов с помощью компьютерного моделирования, а также проведение комплексных стендовых испытаний двигателя Evolution 20GX2 для верификации полученных результатов.

Библиографический список

1. EVO20GX2. User manual. https://www.horizonhobby.com/pdf/EVOE20GX2-Manual_EN.pdf

2. Колчин А.И., Демидов В.П. Расчёт автомобильных и тракторных двигателей: учеб. пособие для вузов. М.: Высшая школа, 2003. 496 с.

3. Гаевский О.К. Авиамодельные двигатели. Действие, конструкции, эксплуатация. М.: ДОСААФ, 1973. 258 с.

4. Моргулис Ю.Б. Двигатели внутреннего сгорания. Теория, конструкция и расчёт. М.: Машиностроение, 1972. 336 с.

DEVELOPMENT OF A METHODOLOGY FOR CALCULATING THE WORKING PROCESS OF A SMALL-SIZE TWO-STROKE INTERNAL COMBUSTION ENGINE

© 2021

V. V. Biryuk	Doctor of Science (Engineering), Professor of the Department of Thermal Engineering and Thermal Engines; Samara National Research University, Samara, Russian Federation; teplotex_ssau@bk.ru
A. A. Gorshkalev	Senior Lecturer; Department of Thermal Engineering and Thermal Engines, Samara National Research University; Samara, Russian Federation; <u>Agorsh@bk.ru</u>
M. O. Zakharov	Postgraduate Student; Samara National Research University; Samara, Russian Federation; <u>mzakharob95@gmail.com</u>
V. L. Larin	Postgraduate Student; Samara National Research University; Samara, Russian Federation; <u>vlad-larin@mail.ru</u>

On the basis of the available theoretical calculations, methods for calculating the working process and power characteristics of internal combustion engines and the experimental studies carried out, a method for calculating the working process for small-sized two-stroke internal combustion engines was developed and tested. In the course of this work, the following results were obtained: the parameters of the working process and power characteristics of a small two-stroke internal combustion engine; the parameters obtained by calculation during the study of the Evolution 20GX2 engine were compared with the results of an experimental study. According to the results of the comparison, deviations in the values of the parameters of the engine under study from the results of the experimental study at the maximum power and maximum speed modes were identified.

Internal combustion engine; two-stroke internal combustion engine; thermal design; heat balance; full-load curve

<u>Citation:</u> Biryuk V.V., Gorshkalev A.A., Zakharov M.O., Larin V.L. Development of a methodology for calculating the working process of a small-size two-stroke internal combustion engine. *Vestnik of Samara University. Aerospace and Mechanical Engineering*. 2021. V. 20, no. 3. P. 97-109. DOI: 10.18287/2541-7533-2021-20-3-97-109

References

1. EVO20GX2. User manual. Available at:

https://www.horizonhobby.com/pdf/EVOE20GX2-Manual_EN.pdf

2. Kolchin A.I., Demidov V.P. *Raschet avtomobil'nykh i traktornykh dvigateley: ucheb. posobie dlya vuzov* [Calculation of automobile and tractor engines: Manual for university students]. Moscow: Vysshaya Shkola Publ., 2003. 496 p.

3. Gaevskiy O.K. *Aviamodel'nye dvigateli*. *Deystvie, konstruktsii, ekspluatatsiya* [Model aircraft engines. Operation, design, maintenance]. Moscow: DOSAAF Publ., 1973. 258 p.

4. Morgulis Yu.B. *Dvigateli vnutrennego sgoraniya. Teoriya, konstruktsiya i raschet* [Internal combustion engines. Theory, design and calculation]. Moscow: Mashinostroenie Publ., 1972. 336 p.