ВЛИЯНИЕ КОЭФФИЦИЕНТОВ СВЯЗИ И СВЯЗАННОСТИ В КАНАЛЕ ТАНГАЖА НА ДИНАМИКУ ПОЛЁТА СИСТЕМЫ «МАЛЫЙ ИСКУССТВЕННЫЙ СПУТНИК ЗЕМЛИ – ГИРОДЕМПФЕРЫ»

© 20010 И. С. Курочкин

Институт проблем точной механики и управления РАН, г. Саратов

Проводится анализ динамики собственных колебаний относительно центра масс малого искуственного спутника Земли с поплавковыми гиродемпферами, смонтированными по схеме «V-крен». Анализ основан на понятиях коэффициентов связи и связанности между парциальными системами сложной динамической системы.

Спутник, гиродемпферы, колебания, связь, связанность.

Введение

Для демпфирования угловых колебаний гравитационно-устойчивого спутника в качестве второго тела можно применить гироскопический стабилизатор, состоящий из двух поплавковых двухстепенных гироскопов. Для обеспечения демпфирования углового движения спутника по трём осям векторы кинетических моментов обоих гироскопов удерживаются в V-образном положении относительно друг друга при помощи равных по жёсткости и противоположно закрученных спиральных пружин. Эта схема получила название системы «V-крен» [1]. Собственные колебания спутника вызывают прецессию связанных с демпфирующим устройством роторов гироскопов, что приводит к рассеянию энергии колебаний системы за счёт трения в вязкой жидкости, залитой между поплавком и корпусом гиродемпфера.

Для случая малого искусственного спутника Земли (МИСЗ) с гиродемпферами нельзя пренебрегать их моментами инерции. Для простоты рассуждений ограничимся рассмотрением колебаний только по каналу тангажа. Система дифференциальных уравнений, описывающая собственные колебания МИСЗ, приводится, например в [1]. В рассматриваемом случае эта система дополнена инерционным членом m '' и принимает вид

$$\begin{cases} & "+a^2 - h & = 0 \\ m & + + k + hs + 2h & = 0 \end{cases},$$
(1)

где

$$a^{2} = \frac{3(J_{x} - J_{z})}{J_{y}}, h = \frac{H}{J_{y 0}}, = \cos ,$$

$$s = \sin , m = \frac{J_{n}}{J_{y}}, = \frac{K_{d}}{J_{y 0}}, k = \frac{K_{n}}{J_{y 0}}.$$
(2)

Здесь – угол тангажа, – разность углов отклонения осей роторов гиродемпферов от их положений равновесия, ' – первая производная по безразмерному времени = $_{0}t$, t – время, ' – пер- ΠO , $J_X, J_V, J_Z - MO$ вая производная от менты инерции спутника, J_n – момент инерции поплавка гиродемпфера, Н - кинетический момент его ротора, К_d - коэффициент демпфирования, К_n – коэффициент жёсткости компенсационной пружины на оси поплавка, – начальный угол отклонения осей роторов гиродемпферов, 0 – частота обращения МИСЗ вокруг Земли.

Заметим, что система (1) описывает только движение МИСЗ, находящегося на круговой орбите Земли. Движение МИСЗ,

находящегося на эллиптической орбите, описывается иначе, и данный вопрос выходит за рамки этой статьи.

Дифференциальные уравнения парциальных систем комплекса «МИСЗгиродемпферы», а именно: МИСЗ, обозначенной " ", и системы гиродемпферов, обозначенной " ", имеют вид:

$$''+a^2 = 0.$$
 (3)

Это уравнение движения парциальной системы МИСЗ (канал тангажа), где $a^2 = {}^2$ – частота собственных колебаний системы (3).

Уравнение движения парциальной системы гиродемпферов

m''+ '+k + hs = 0

где
$$2n = /m$$
, $^2 = (k + hs)/m$.

Тогда частота собственных колебаний системы (4) будет равна

$$=\sqrt{2^2-n^2}.$$
 (5)

(4)

Систему (1) можно записать в виде $A\overline{\ddot{q}} + B\overline{\dot{q}} + C\overline{q} = 0$,

где $\overline{q} = (,)^T$, А – матрица коэффициентов при вторых производных, В – матрица коэффициентов при первых производных, С – матрица коэффициентов при переменных [2].

В общем случае:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix},$$
(6)

$$C = \begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{pmatrix}.$$

Для системы (1) они имеют вид:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & m \end{pmatrix}, \quad B = \begin{pmatrix} 0 & -h \\ 2h & \end{pmatrix},$$
$$C = \begin{pmatrix} a^2 & 0 \\ 0 & k + hs \end{pmatrix}.$$
 (7)

Рассмотрим согласно [2,3] расстройку собственных частот парциальных систем (коэффициент связанности при взаимодействии " и " парциальных систем с собственными частотами и):

$$S = \left| \frac{2 - 2}{2} \right|. \tag{8}$$

Интенсивность перекачки энергии колебаний из одной парциальной системы в другую в соответствии с (4) определим коэффициентами связи на основе сил, имеющих потенциал _{іі} [2,3], а именно:

$$_{ij}^{c} = \frac{c_{ij}c_{ji}}{c_{ii}c_{jj}},$$
(9)

где $i = \overline{1,2}; j = \overline{1,2}$ (номера парциальных систем).

Аналогично рассмотрим коэффициент инерционной связи

$$_{ij}^{\mu} = \frac{a_{ij}a_{ji}}{a_{ii}a_{ji}}$$
(10)

и коэффициент гироскопической связи

$$_{ij}^{e} = \frac{b_{ij}b_{ji} + a_{ij}c_{ji} + a_{ji}c_{ij}}{b_{ii}b_{jj} + a_{ii}c_{jj} + a_{jj}c_{ii}}.$$
(11)

При коэффициенте связи, превышающем коэффициент связанности, происходит существенное взаимодействие между парциальными системами. В противоположной ситуации колебания одной парциальной системы слабо зависят от колебаний другой.

Расчёт зависимости коэффициентов связанности и связи

Для системы (1):

$$S = \left| \frac{a^{2} - \left(\left(\frac{k+hs}{m}\right)^{2} - \left(\frac{k}{2m}\right)^{2}\right)}{a\sqrt{\left(\frac{k+hs}{m}\right)^{2} - \left(\frac{k}{2m}\right)^{2}}} \right|,$$
(12)

$$\Gamma = 0, \quad \Gamma = 0, \quad \Gamma = \frac{2h^{2}}{k+hs+ma^{2}}.$$
(13)
Составим отношение $d^{\Gamma} = \frac{\Gamma}{S}.$

В таблице 1 приведены зависимости коэффициентов d^{Γ} от безразмерных параметров h, m, . Графики зависимостей коэффициента d^{Γ} от параметров h, m, приведены на рис. 1. Зависимость коэффициента d^{Γ} от Γ и S проиллюстрирована на рис. 2.

h	dr	m	d		d ^r
0.4	0.0452463	0.4	0.0452463	0.4	0.148285
0.42	0.0892441	0.42	0.0417598	0.42	0.131549
0.44	0.131959	0.44	0.0386727	0.44	0.113833
0.46	0.17921	0.46	0.0359246	0.46	0.0945734
0.48	0.233881	0.48	0.0334664	0.48	0.0725046
0.5	0.298776	0.5	0.0312579	0.5	0.0434281
0.52	0.377378	0.52	0.0292656	0.52	0.0343722i
0.54	0.474494	0.54	0.0274616	0.54	0.0629294i
0.56	0.597199	0.56	0.0258225	0.56	0.0804107i
0.58	0.75652	0.58	0.0243283	0.58	0.0933564i
0.6	0.970745	0.6	0.0229624	0.6	0.103565i
0.62	1.27268	0.62	0.02171	0.62	0.111864i

Таблица 1. Зависимости коэффициента d^{Γ} от параметров h, m,

Рис. 1 Зависимости коэффициента d^{Γ} от безразмерных параметров h, m,

$$1 - d^{\Gamma}(h), 2 - d^{\Gamma}(m), 3 - d^{\Gamma}(m)$$

Puc. 2. Зависимость коэффициента d^{Γ} om ${}^{\Gamma}$ и S

Выводы

При значении коэффициента d^г, меньшем единицы, парциальные системы (одна из которых – сам МИСЗ, другая – его гиродемпферы) слабо взаимодействуют друг с другом, а при значении, большем единицы, происходит существенное взаимодействие между ними. Значение d^г, равное единице, является точкой бифуркации системы, определяющей её поведение.

Как видно из рис. 1, взаимодействие парциальных систем усиливается при увеличении параметра h.

На рис. 2 показано, что взаимодействие между парциальными системами наиболее сильно в области больших по модулю значений коэффициента связи

и меньших по модулю значений коэффициента связанности S .

Библиографический список

1. Боёвки, В.И. Ориентация искусственных спутников в гравитационных и магнитных полях [Текст] / В.И. Боёвки, Ю. Г. Гуревич, Ю. Н. Павлов, Г.Н. Толстоусов.– М.: Наука, 1976.

2. Кузнецов, А. Ю. Влияние параметрических возмущений гиродемпферов системы ориентации искусственного спутника Земли на его динамику [Текст]. Диссертация на соискание учёной степени кандидата технических наук. Саратов, 2004. – 160 с.

3. Мандельштам, Л. И. Лекции по теории колебаний [Текст] /Л.И. Мандельштам. – М.: Наука, 1971. – 160 с.

References

1. Boyovkin, V. I. Orientation of artificial satellites in gravitational and magnetic fields [Text] / V. I. Boyovkin, Yu. G. Gurevich, Yu. N. Pavlov, G. N. Tolstousov. – Moscow: Science, 1976.

2. Kuznetsov, A. Yu. Influence of parametrical perturbations of gyrodampers of the attitude control system of an artificial Earth satellite on its dynamics [Text] / A. Yu. Kuznetsov // Dissertation for the scientific degree of candidate of technical sciences, 2004. 160 p.

3. Mandelstamm, L. I. Lectures on the theory of fluctuations [Text] / L. I. Mandelstamm. – M.: Science, 1971. – 160 p.

INFLUENCE OF THE COUPLING AND COHERENCE COEFFICIENTS IN THE PITCH THE FLIGHT DYNAMICS OF THE SYSTEM «SMALL EARTH SATELLITE-GURODAMPERS»

© 2010 I. S. Kurochkin

Institute of the problems of fine mechanics and management, Russian Academy of Science, Saratov

The paper analyses flight dynamics on the basis of coupling and coherence between the parts of a complex dynamic system – small artificial Earth satellite – in the circular orbit using gyroscopic dampers arranged according to the "V-roll" scheme as dampers of their natural oscillations.

Satellite, gyrodampers, fluctuations, coupling, coherence.

Информация об авторах

Курочкин Игорь Степанович, аспирант Института проблем точной механики и управления РАН, г. Саратов. Область научных интересов: гиродемпфирование, навигация, гироскопия. E-mail: <u>kurochkinis@mail.ru</u>.

Kurochkin Igor Stepanovich, post-graduate student. Institute of the problems of fine mechanics and management, Russian Academy of Sciences, Saratov. Area of research: artificial Earth satellites, gyrodamping, navigation, gyroscopy. E-mail: <u>kurochkinis@mail.ru</u>.