УДК 629.786

МЕТОД УЧЁТА ХАРАКТЕРИСТИК ТРОСА ПРИ МОДЕЛИРОВАНИИ ДВИЖЕНИЯ ОРБИТАЛЬНОЙ ТРОСОВОЙ СИСТЕМЫ

© 2010 Е.В. Лаптев

ФГУП «ГНПРКЦ «ЦСКБ-Прогресс», г. Самара

Рассматривается задача моделирования движения орбитальной тросовой системы (ОТС) с учётом характеристик троса.

Орбитальная тросовая система, раздельное пошаговое моделирование, псевдосвободное движение, движение подтягивания

Орбитальные тросовые системы в современной космической технике существенный вызывают интерес. Большое значение для их практического использования имеют вопросы моделирования процессов ИХ развёртывания В И движения. большинстве известных работ, посвяшённых данному вопросу, используется допущение о невесомости троса, связывающего объекты ОТС, что может привести к весьма существенным отличиям результатов моделирования от реального движения ОТС. Для учёта характеристик троса предложен ряд методов, основанных на его гибкой представлении в виле материальной нити или в виде цепочки сосредоточенных масс, что значительно усложняет модель движения И увеличивает трудоёмкость моделирования [1,2].

В данной работе предлагается метод, позволяющий простыми средствами учесть влияние на движение ОТС массы троса и действующих на него внешних сил.

С этой целью OTC рассматривается в виде совокупности (базового, материальных трёх тел отделяемого космического объекта и связывающего ИХ гибкого троса), движущейся под действием показанной на рисунке 1 системы внешних и внутренних сил.

Рис. 1. Схема ОТС и действующих на неё внешних и внутренних сил

Уравнения поступательного движения указанных тел в поле Земли можно представить в виде

$$\mathbf{m}_{1}\mathbf{F}_{1} = \overline{\mathbf{F}}_{1} + \overline{\mathbf{T}}_{1} + \overline{\mathbf{\Phi}}_{1};$$

$$\mathbf{m}_{2}\mathbf{F}_{2} = \overline{\mathbf{F}}_{2} + \overline{\mathbf{T}}_{2};$$

$$\mathbf{m}_{3}\mathbf{F}_{3} = \overline{\mathbf{F}}_{3} - \overline{\mathbf{T}}_{1} - \overline{\mathbf{T}}_{2} - \overline{\mathbf{\Phi}}_{1};$$

$$\mathbf{E} = \mathbf{w}_{\mathrm{TP}};$$

$$\mathbf{m}_{1} = -\mathbf{m}_{\mathrm{T}}\mathbf{E};$$

$$\mathbf{m}_{3} = \mathbf{m}_{\mathrm{T}}\mathbf{E};$$

где **m**₁, **m**₂, **m**₃ - массы объектов ОТС и выпущенного троса, соответственно;

 $\bar{\mathbf{r}}_1, \bar{\mathbf{r}}_2, \bar{\mathbf{r}}_3$ - радиус–векторы, определяющие положение центров масс объектов ОТС и троса относительно центра масс Земли; $\bar{\mathbf{F}}_1, \bar{\mathbf{F}}_2, \bar{\mathbf{F}}_3$ - равнодействующие внешних сил, действующих на объекты ОТС и

трос;

 $\overline{\mathbf{T}}_1, \overline{\mathbf{T}}_2$ - силы натяжения троса в местах его крепления к объектам ОТС; $\overline{\mathbf{\Phi}}_1$ реактивная

сила, действующая на базовый объект ОТС и трос в месте его выпуска; \mathbf{L} длина выпущенного троса; \mathbf{w}_{TP} - закон выпуска (втягивания) троса; \mathbf{m}_{TP} -

погонная масса троса; $\mathbf{D} = \left| \vec{\mathbf{r}}_2 - \vec{\mathbf{r}}_1 \right|$ - расстояние между объектами ОТС.

Поскольку расстояние между объектами ОТС не может быть больше длины выпущенного троса, то в процессе её движения должно выполняться ограничение

$$\mathbf{D} \mathbf{\pounds} \mathbf{L}.$$
 (2)

Из системы (1) следует, что закон движения ОТС зависит от входящих в неё сил, которые по своей природе существенно различны. Если реактивную и внешние силы можно считать известными и изменяющимися по законам, не зависящим от характера движения ОТС, то силы натяжения троса $\overline{\mathbf{T}}_{1}$ и $\overline{\mathbf{T}}_{2}$ неизвестны. Закон ИХ изменения, в свою очередь, зависит от закона движения ОТС, вследствие чего моделирование eë движения С использованием системы (1)R представленном выше виде является трудноразрешимой задачей.

Для устранения указанного противоречия предлагается метод, основанный на последовательном исключении сил натяжения из уравнений движения.

Отметим, что движение ОТС в общем случае может состоять из характерных участков двух типов: участков, на которых силы натяжения троса равны нулю ($\overline{T}_1 = \overline{T}_2 = 0$), и участков, где силы его натяжения отличны от нуля.

Моменты перехода между характерными участками определяются путём сравнения расстояния между объектами ОТС и скорости его изменения с длиной выпущенного троса и скоростью его выпуска. Если

$$(\mathbf{D} < \mathbf{L}) \stackrel{\circ}{\mathrm{U}} (\mathbf{D} = \mathbf{L} \stackrel{\circ}{\mathrm{U}} \stackrel{\circ}{\mathbf{D}} < \stackrel{\circ}{\mathbf{E}}), \qquad (3)$$

то трос не натянут и силы его натяжения можно считать равными нулю ($\overline{T}_1 = \overline{T}_2 = 0$). В противном случае трос натянут и указанные силы отличны от нуля.

На участках первого типа трос никакого влияния на движение объектов ОТС не оказывает, вследствие чего уравнение движения его центра масс из системы (1) целесообразно исключить и рассматривать её в виде

$$\mathbf{m}_{1}\mathbf{F}_{1} = \overline{\mathbf{F}}_{1} + \overline{\mathbf{\Phi}}_{1};$$

$$\mathbf{m}_{2}\mathbf{F}_{2} = \overline{\mathbf{F}}_{2};$$

$$\mathbf{E} = \mathbf{w}_{\mathrm{TP}};$$

$$\mathbf{m}_{1} = -\mathbf{m}_{\mathrm{T}}\mathbf{E};$$

$$\mathbf{m}_{3} = \mathbf{m}_{\mathrm{T}}\mathbf{E}.$$
(4)

Система (4) не содержит неизвестных сил и её интегрирование не представляет затруднений.

Для участков, на которых трос натянут и силы его натяжения отличны от нуля, введём в рассмотрение новые переменные

$$\mathbf{m}_2^{\boldsymbol{\zeta}} = \mathbf{m}_2 + \mathbf{m}_3; \tag{5}$$

$$\overline{\mathbf{r}_2} = \frac{\mathbf{m}_2 \overline{\mathbf{r}}_2 + \mathbf{m}_3 \overline{\mathbf{r}}_3}{\mathbf{m}_2 + \mathbf{m}_3}.$$
 (6)

В силу того, что масса троса в единицу времени изменяется незначительно, т. е. $\mathbf{m}_3 \gg \mathbf{0}$, допустим, что

$$\vec{F}_{2} = \frac{\mathbf{m}_{2}\vec{F}_{2} + \mathbf{m}_{3}\vec{F}_{3}}{\mathbf{m}_{2} + \mathbf{m}_{3}}, \qquad (7)$$

$$\mathbf{\tilde{f}}_{2}^{*} = \frac{\mathbf{m}_{2}\mathbf{\tilde{f}}_{2} + \mathbf{m}_{3}\mathbf{\tilde{f}}_{3}}{\mathbf{m}_{2} + \mathbf{m}_{3}}.$$
 (8)

Кроме того, на участках натяжения троса можно считать, что трос, силы его натяжения и реактивная сила направлены вдоль прямой, соединяющей объекты ОТС, вследствие чего

$$\overline{\mathbf{r}}_3 = \frac{\overline{\mathbf{r}}_1 + \overline{\mathbf{r}}_2}{2}; \tag{9}$$

$$\overline{\mathbf{T}}_{1} = \mathbf{T}_{1} \frac{\overline{\mathbf{r}}_{2}^{\boldsymbol{\zeta}} - \overline{\mathbf{r}}_{1}}{\mathbf{D}^{\boldsymbol{\zeta}}}; \qquad (10)$$

$$\overline{\Phi}_{1} = -\mathbf{m}_{n} \mathbf{B}^{2} \frac{\overline{\mathbf{r}}_{2}^{\boldsymbol{\zeta}} - \overline{\mathbf{r}}_{1}}{\mathbf{D}^{\boldsymbol{\zeta}}}; \qquad (11)$$

где

 $\mathbf{D}^{\mathbf{c}} = \left| \overline{\mathbf{r}}_{2}^{\mathbf{c}} - \overline{\mathbf{r}}_{1} \right|. \tag{12}$

Складывая второе и третье уравнения системы (1), с учётом принятых выше обозначений и допущений приведём её к виду

$$\mathbf{m}_{1}\mathbf{\hat{E}} = \overline{\mathbf{F}}_{1}' + \mathbf{T}_{1} \times \frac{\overline{\mathbf{r}_{2}} - \overline{\mathbf{r}_{1}}}{\mathbf{D}^{c}};$$

$$\mathbf{m}_{2}^{c}\mathbf{\hat{E}}_{2} = \overline{\mathbf{F}}_{2}' - \mathbf{T}_{1} \times \frac{\overline{\mathbf{r}_{2}} - \overline{\mathbf{r}_{1}}}{\mathbf{D}^{c}};$$

$$\mathbf{\hat{E}} = \mathbf{w}_{\tau p}; \qquad (13)$$

$$\mathbf{m}_{1} = -\mathbf{m}_{u}\mathbf{\hat{E}};$$

$$\mathbf{m}_{2}^{c} = \mathbf{m}_{u}\mathbf{\hat{E}},$$

где

$$\mathbf{F}_1 = \mathbf{F}_1 + \mathbf{\Phi}_1; \tag{14}$$

$$\overline{\mathbf{F}}_{2}^{c} = \overline{\mathbf{F}}_{2} + \overline{\mathbf{F}}_{3} - \overline{\mathbf{\Phi}}_{1}.$$
(15)

Система (13) описывает поступательное движение центров масс базового объекта и связки **трос+отделяемый объект** под действием силы натяжения троса \overline{T}_1 и внешних сил \overline{F}_1' и \overline{F}_2' , показанных на рисунке 2.

Если параметры их движения известны, то с помощью соотношений (5-9) несложно определить и параметры движения центра масс отделяемого объекта.

Рис. 2. Система двух точечных масс (центров масс базового объекта и связки трос+отделяемый объект) и действующих на неё сил

Система (13) аналогична системе движения двух точечных масс, связанных

невесомым тросом, и содержит только неизвестную силу \mathbf{T}_{1} , для ОДНУ исключения которой из уравнений движения может применен быть разработанный автором метод раздельного пошагового моделирования.

Согласно указанному методу движение указанных масс на малых интервалах времени с помощью замены переменных раскладывается на псевдосвободное движение и движение подтягивания. Под псевдосвободным движением при этом понимается их движение под действием системы сил, из которой исключается сила натяжения троса, а её влияние учитывается в виде дополнительных добавок, определяемых по конечным соотношениям.

Уравнения псевдосвободного движения центров масс базового объекта и связки трос +отделяемый объект имеют вид

$$\mathbf{m}_{1}\mathbf{F}_{1} = \overline{\mathbf{F}}_{1};$$

$$\mathbf{m}_{2}\mathbf{F}_{2}^{\mathbf{F}} = \overline{\mathbf{F}}_{2}^{\mathbf{F}};$$

$$\mathbf{E} = \mathbf{w}_{\mathrm{rp}};$$

$$\mathbf{m}_{1} = -\mathbf{m}_{\mathrm{n}}\mathbf{E};$$

$$\mathbf{m}_{2}^{\mathbf{F}} = -\mathbf{m}_{\mathrm{n}}\mathbf{E};$$

$$\mathbf{m}_{2}^{\mathbf{F}} = -\mathbf{m}_{\mathrm{n}}\mathbf{E};$$

$$\mathbf{m}_{2}^{\mathbf{F}} = -\mathbf{m}_{\mathrm{n}}\mathbf{E};$$

$$\mathbf{m}_{2}^{\mathbf{F}} = -\mathbf{m}_{\mathrm{n}}\mathbf{E};$$

и интегрируются с начальными условиями

$$\overline{\mathbf{r}}_{1}(\mathbf{t}_{i}) = \overline{\mathbf{r}}_{1}(\mathbf{t}_{i}); \quad \overline{\mathbf{f}}_{1}(\mathbf{t}_{i}) = \overline{\mathbf{f}}_{1}(\mathbf{t}_{i}); \quad (17)$$

$$\overline{\mathbf{r}}_{2}'(\mathbf{t}_{i}) = \overline{\mathbf{r}}_{2}'(\mathbf{t}_{i}); \quad \overline{\mathbf{f}}_{2}'(t_{i}) = \overline{\mathbf{f}}_{2}'(t_{i})$$

на каждом шаге.

На каждом шаге при этом определяются

$$\mathbf{d}^{\boldsymbol{\zeta}} = \left| \overline{\mathbf{r}}_{2}^{\boldsymbol{\zeta}} - \overline{\mathbf{r}}_{1} \right|; \qquad \overline{\mathbf{d}}^{\boldsymbol{\zeta}} = \frac{\overline{\mathbf{r}}_{2}^{\boldsymbol{\zeta}} - \overline{\mathbf{r}}_{1}}{\mathbf{d}^{\boldsymbol{\zeta}}}; \qquad (18)$$

$$\mathbf{\hat{d}}' = (\mathbf{\hat{r}}_{2}' - \mathbf{\hat{r}}_{1}') \times \mathbf{\hat{d}}'^{0}; \quad L' = \frac{m_{2}' + m_{2}}{2m_{2}'} \cdot L \quad (19)$$

и проводится проверка условий

 $(\mathbf{d}^{\zeta} < \mathbf{L}^{\zeta}) \acute{\mathbf{U}} (\mathbf{d}^{\zeta} = \mathbf{L}^{\zeta} \acute{\mathbf{U}} \acute{\mathbf{d}}^{\zeta} < \acute{\mathbf{L}}),$ (20) эквивалентных условиям (3).

Если условия (20) не выполняются, то силы натяжения троса отличны от нуля и параметры движения центров масс базового объекта и связки **трос+отделяемый объект** складываются из параметров их **псевдосвободного** движения и движения **подтягивания**

$$\overline{\mathbf{r}}_{1} = \overline{\mathbf{r}}_{1} + \frac{\mathbf{m}_{2}^{\prime}}{\mathbf{m}_{1} + \mathbf{m}_{2}^{\prime}} (\mathbf{d}^{\prime} - \mathbf{L}^{\prime}) \times \overline{\mathbf{d}}^{\prime 0}; \qquad (21)$$

$$\overline{\mathbf{r}}_{2}^{\,\,\boldsymbol{\zeta}} = \overline{\mathbf{r}}_{2}^{\,\,\boldsymbol{\zeta}} - \frac{\mathbf{m}_{1}}{\mathbf{m}_{1} + \mathbf{m}_{2}^{\,\boldsymbol{\zeta}}} (\mathbf{d}^{\,\,\boldsymbol{\zeta}} - \mathbf{L}^{\,\,\boldsymbol{\zeta}}) \times \overline{\mathbf{d}}^{\,\,\boldsymbol{\zeta}}^{0};$$

$$\boldsymbol{\&} \quad \boldsymbol{\&} \quad \mathbf{m}_{2}^{\,\,\boldsymbol{\zeta}} \quad \boldsymbol{\&} \quad \boldsymbol{\bigotimes} \quad \overline{\mathbf{L}}^{\,\,\boldsymbol{\zeta}} \boldsymbol{\&} \quad \overline{\mathbf{d}}^{\,\,\boldsymbol{\zeta}} \boldsymbol{\&} \quad \overline{\mathbf{L}}^{\,\,\boldsymbol{\zeta}} \boldsymbol{\&} \quad \overline{\mathbf{d}}^{\,\,\boldsymbol{\zeta}} \boldsymbol{\check{\zeta}} \boldsymbol{\&} \quad \overline{\mathbf{d}}^{\,\,\boldsymbol{\zeta}} \boldsymbol{$$

$$\mathbf{r}_{1}^{\mathbf{x}} = \mathbf{r}_{1}^{\mathbf{x}} + \frac{2}{\mathbf{m}_{1} + \mathbf{m}_{2}^{\mathbf{x}}} (\mathbf{d}^{\mathbf{x}} - \mathbf{L}^{\mathbf{x}}) \times \mathbf{d}^{\mathbf{v}};$$
 (22)

$$\vec{R}_{2} = \vec{R}_{2} - \frac{m_{1}}{m_{1} + m_{2}} (\vec{R} - \vec{R}) \cdot \vec{d}^{0}$$

После этого проводится переход к следующему шагу интегрирования системы (16).

Если условия (20) выполняются, то $\overline{\mathbf{T}}_1 = \overline{\mathbf{T}}_2 = \mathbf{0}$ и проводится переход к интегрированию системы (4) при начальных условиях

$$\overline{\mathbf{r}}_1 = \overline{\mathbf{r}}_1; \quad \overline{\mathbf{r}}_2 = \frac{2\mathbf{m}_2^{\mathsf{c}}\overline{\mathbf{r}}_2^{\mathsf{c}} - (\mathbf{m}_2^{\mathsf{c}} - \mathbf{m}_2)\overline{\mathbf{r}}_1}{\mathbf{m}_2^{\mathsf{c}} + \mathbf{m}_2}; (23)$$

$$\mathbf{f}_{1} = \mathbf{f}_{1}; \quad \mathbf{f}_{2} = \frac{2\mathbf{m}_{2}^{c}\mathbf{f}_{2}^{c} - (\mathbf{m}_{2}^{c} - \mathbf{m}_{2})\mathbf{f}_{1}}{\mathbf{m}_{2}^{c} + \mathbf{m}_{2}}; (24)$$

в процессе интегрирования также проводится пошаговая проверка условий натяжения троса и в зависимости от их выполнения либо продолжается интегрирование системы (4), либо проводится переход к интегрированию системы (13) с начальными условиями

$$\mathbf{m}_{2}^{\prime} = \mathbf{m}_{2} + \mathbf{m}_{3}; \qquad (25)$$

$$\bar{\mathbf{r}}_{2}^{\,\,\zeta} = \frac{(2\mathbf{m}_{2} + \mathbf{m}_{3})\bar{\mathbf{r}}_{2} + \mathbf{m}_{3}\bar{\mathbf{r}}_{1}}{2(\mathbf{m}_{2} + \mathbf{m}_{3})}; \qquad (26)$$

$$\mathbf{\hat{F}}_{2} = \frac{(2\mathbf{m}_{2} + \mathbf{m}_{3})\mathbf{\hat{F}}_{2} + \mathbf{m}_{3}\mathbf{\hat{F}}_{1}}{2(\mathbf{m}_{2} + \mathbf{m}_{3})}.$$
 (27)

Силы натяжения троса на участках его натяжения по известным кинематическим параметрам движения объектов ОТС при необходимости могут быть определены из приведённых ниже соотношений, которые несложно получить из уравнений (1) и (13) с учётом кинематических связей

$$T_{1} = \frac{m_{1}m_{2}}{m_{1} + m_{2}} (\vec{a}_{2} - \vec{a}_{1}) \times \vec{R}^{'0} - \frac{m_{1}(m_{2} + m_{2})}{2(m_{1} + m_{2})} (\vec{k} - w^{2}L);$$

$$\begin{split} \mathbf{T}_{2} &= \frac{\mathbf{m}_{2}(\mathbf{2m}_{1} + \mathbf{m}_{3})}{\mathbf{m}_{1}(\mathbf{m}_{2}^{'} + \mathbf{m}_{2})} \mathbf{T}_{1} + \\ &+ \frac{\mathbf{m}_{2}}{\mathbf{m}_{2}^{'} + \mathbf{m}_{2}} \left(\mathbf{m}_{3}(\mathbf{\bar{a}}_{1} + \mathbf{\bar{a}}_{2}) - \mathbf{2}\mathbf{\bar{F}}_{3} \right) \times \mathbf{\bar{R}}^{'0} + \\ &+ \frac{\mathbf{m}_{2}(\mathbf{2m}_{1} + \mathbf{m}_{3})}{\mathbf{m}_{1}(\mathbf{m}_{2}^{'} + \mathbf{m}_{2})} \mathbf{\overline{\Phi}} \times \mathbf{\bar{R}}^{'0}; \\ \text{Fige} \\ \mathbf{W}^{2} &= \frac{\mathbf{D}\mathbf{\overline{V}}' \times \mathbf{D}\mathbf{\overline{V}}' - (\mathbf{D}\mathbf{\overline{V}}' \times \mathbf{\overline{R}}^{'0})}{(\mathbf{R}^{'})^{2}}; \\ \mathbf{D}\mathbf{\overline{V}}' &= \mathbf{f}_{2}' - \mathbf{f}_{1}; \qquad \mathbf{R}' = \left| \mathbf{\bar{r}}_{2}' - \mathbf{\bar{r}}_{1} \right|; \\ &- \mathbf{\overline{F}}_{1} \qquad - \mathbf{\overline{F}}_{2} \end{aligned}$$

$$a_{1} = \frac{1}{m_{1}};$$
 $a_{2} = \frac{1}{m_{2}};$
 $\overline{a}_{1} = \overline{a}_{1} + \frac{\overline{\Phi}_{1}}{m_{1}};$ $\overline{a}_{2} = \overline{a}_{2} + \frac{\overline{F}_{2} - \overline{\Phi}_{1}}{m_{2}};$

Предлагаемый метод с помощью весьма простых средств позволяет учесть влияние на движение ОТС массы троса и любых действующие на него и объекты ОТС внешних сил и обеспечить за счёт этого высокую степень соответствия результатов моделирования реальному движению ОТС.

Библиографический список

1. Иванов В.А., Ситарский Ю.С. Динамика полёта системы гибко связанных космических аппаратов. М., Машиностроение, 1986.

2. А.П.Алпатов, В.В.Белецкий и др. Динамика космических систем с тросовыми и шарнирными соединениями. Москва-Ижевск: НИЦ «Регулярная и хаотическая динамика». Институт компьютерных исследований, 2007.

References

1. V.A.Ivanov, Y.S.Sitarsky – "Flight dynamics of flexibly coupled satellites system" - Mechanical Engineering, 1986,Moscow,.

2. A.P.Alpatov, V.V.Beletsky – "Dynamics of space system with tether and hinge joint" – Moscow-Izhevsk: Research Center "Regular and random dynamics". Institute of information technologies, 2007.

TETHER PARAMETERS CONSIDERATION DURING MOTION SIMULATION OF ORBITAL TETHER SYSTEM

© 2010 E.V.Laptev

SRP SRC 'TsSKB-Progress', Samara

Major task of orbital tether system motion simulation (OTS) taking into account its parameters is represented in the article.

Orbital tether system, step-by-step simulation, pseudofree motion, tightening motion

Информация об авторе

Лаптев Евгений Васильевич, ведущий инженер конструктор ФГУП «ГНПРКЦ «ЦСКБ-Прогрес», E-mail: <u>csdb@mail.samtel.ru</u>. Область научных интересов: динамика полёта КА, моделирование процессов управления космическими аппаратами.

Laptev Evgeniy Vasiljevich, principal design engineer State Research and Production Space Center "TsSKB-Progress", E-mail address: <u>csdb@mail.samtel.ru</u>. Field of research: SC flight dynamics, simulation of SC control procedure.