ПРЕОБРАЗОВАТЕЛЬ РАСХОДА И ТЕМПЕРАТУРЫ ЖИДКОСТИ И ВОЗДУХА В ТРУБОПРОВОДАХ

© 2011 В. Н. Николаев, Ю. Н. Кабанов

ФГУП «СибНИА им. С.А. Чаплыгина»

Рассматриваются вопросы оптимизации параметров термоконвективного преобразователя расхода и температуры жидкости и воздуха, оценены погрешности параметрической идентификации.

Математическая модель, преобразователь расхода, термоконвективный метод, термопреобразователь, трубопровод, параметрическая идентификация, погрешность параметрической идентификации.

Исследование и диагностирование технического состояния гидросистемы или системы кондиционирования самолёта требует использования результатов измерений расхода и температуры жидкости и воздуха в трубопроводах. Эти параметры изменяются в широких пределах, а процессы их изменения являются нестационарными.

По совокупности предъявляемых требований к преобразователям расхода и температуры наиболее целесообразно использовать термоконвективный метод постоянной температуры. При использовании этого метода необходимо решить проблемы повышения быстродействия и снижения чувствительности к изменению теплопроводности стенок трубопроводов.

В данной работе рассматриваются вопросы оптимального синтеза измерительной системы, включающей первичный и вторичный преобразователи параметров жидкости и воздуха в трубопроводах.

При исследовании погрешности термоконвективного преобразователя от изменения толщины стенки трубопровода l_{tb} и коэффициента теплопроводности λ_{tb} определена зависимость методической погрешности от взаимного положения нагревателя и термопреобразователей (рис. 1).

Это позволило путём оптимального расположения элементов *первичного* преобразователя значительно снизить методическую погрешность измерения расхода при изменении теплопроводности стенок трубопровода. Эта погрешность определяется величиной $l_{th} \lambda_{th}$.

Для оценивания погрешности воспользуемся описанием процесса теплообмена

Рис. 1. Схема первичного термоконвективного преобразователя расхода и температуры: x_1, x_2, x_3 - расстояния термопреобразователей 1, 2, 3 от нагревателя; T_1, T_2, T_3 - температуры термопреобразователей; W_{lb} - мощность нагревателя; J_{lq} - массовая скорость жидкости или воздуха

трубопровода с первичным преобразователем, приняв допущения о неизменности температуры стенки в сечении трубопровода, незначительности нагрева жидкости или воздуха, о постоянстве по длине трубопровода коэффициента теплоотдачи внутренней поверхности, об отсутствии потерь в окружающую трубопровод среду:

$$\lambda_{lb} l_{lb} \frac{d^2 (T_{lb} - T_{lq})}{dx^2} + q(x) = \alpha_{lb} (T_{lb} - T_{lq}), \quad (1)$$

где T_{tb} — температура поверхности трубопровода; T_{eq} — температура жидкости или воздуха в трубопроводе; α_{tb} — коэффициент теплоотдачи внутренней поверхности трубопровода; q(x) — поверхностная плотность теплового потока от нагревателя.

Решение уравнения (1) при расстоянии термопреобразователя от нагревателя *x* больше полуширины *L* кольцевого нагревателя может быть записано в виде

$$T_{tb} - T_{lq} = \frac{q}{2\lambda_{tb} l_{tb} m^2} (e^{mL} - e^{-mL}) e^{-mx}, \qquad (2)$$

где

$$m = \sqrt{\frac{\alpha_{tb}}{\lambda_{tb} l_{tb}}};$$
(3)

$$q = \frac{W_{lb}}{2\pi d_{lb}L};\tag{4}$$

$$\alpha_{lb} = \frac{0.023 J_{lq}^{0.8} \operatorname{Pr}^{0.4} \lambda_{lq}}{\mu_{lq}^{0.8} d_{lb}^{0.2}}.$$
(5)

В выражениях (3)–(5) введены следующие обозначения: W_{tb} — мощность нагревателя; d_{tb} — диаметр трубопровода; J_{lq} — массовая скорость жидкости или воздуха в трубопроводе; Pr — число Прандтля; λ_{lq} — коэффициент теплопроводности жидкости

или воздуха; μ_{lq} — динамическая вязкость жидкости или воздуха.

В установившемся режиме для термоконвективного расходомера соблюдается условие

$$T_1 - T_2 = const, \quad T_2 = T_{lq},$$
 (6)

где *T*₁, *T*₂ — температура 1, 2 термопреобразователей соответственно.

Используя выражения (2)–(5), получим зависимость теплового потока на внутренней поверхности трубопровода

$$W_{tb} = W_{tb}(J_{la})$$

для различных расстояний от нагревателя термопреобразователя с температурой Т₁ и различных коэффициентов теплопроводности и толщины трубопровода. На рис. 2 приведены номограммы W_{tb} от J_{lq} для трубопровода диаметром $d_{lb} = 4 \cdot 10^{-2}$ м, L == 5·10⁻³ м, $T_{tb} - T_{lq}$ = 5 К. Анализ зависимости $W_{tb}(J_{lq})$ показал, что путём подбора расстояния x₁ можно значительно снизить их разброс в узком диапазоне изменения J_{lq} . Причём увеличение расстояния x_1 , обеспечивающее в установившемся режиме минимальный разброс $W_{tb}(J_{lq})$, приводит к значительному увеличению времени переходных процессов в системе нагреватель - термопреобразователь.

Данное противоречие можно устранить, используя дополнительный термопреобразователь, размещаемый между преобразователями T_1 и T_2 , и обеспечивая в установившемся режиме условие

$$\Delta_{1,2} + k_3 \,\Delta_{3,2} = \Delta T_{set} = const,\tag{7}$$

где $\Delta_{1,2}$, $\Delta_{3,2}$ – разность температур, соответственно, термопреобразователей 1, 3 с температурой преобразователя 2; ΔT_{set} — заданная избыточная температура; k_3 — постоянный коэффициент.

Рис. 2. Номограммы теплового потока на внутренней поверхности трубопровода W_{tb} от массовой скорости жидкости или воздуха J_{lq}

Зависимость $W_{tb}(J_{lq})$ была получена путём подстановки выражения (2) для преобразователей с температурами T_1 , T_2 в уравнение (7). С целью упрощения уравнений в дальнейшем будем пользоваться зависимостью $W_{tb}(\alpha_{tb})$ в виде

$$W_{tb}(\alpha_{tb}) = \frac{4\pi d_{tb} L \lambda_{tb} l_{tb} m^2 \Delta T_{set}}{(e^{mL} - e^{-mL})(e^{-mx_1} + k_3 e^{-mx_3})}.$$
 (8)

Оптимизацией координат размещения x_1 , x_3 термопреобразователей 1, 3 и коэффициента k_3 для постоянных значений коэффициента теплоотдачи α_{tb} можно исключить погрешность от изменения теплопроводности трубопровода. В качестве критерия оптимизации значений x_1 , x_3 , k_3 используем выражение

$$\min \Phi(\alpha_{tb}) = \left(\frac{W_1(\alpha_{tb})}{W_0(\alpha_{tb})} - 1\right)^2 + \left(\frac{W_3(\alpha_{tb})}{W_0(\alpha_{tb})} - 1\right)^2,$$
(9)

где $W_0(\alpha_{tb})$ — значение мощности нагревателя, соответствующее $(\lambda_{tb} l_{tb})_0 = 0,5$ Вт/К и используемого в качестве градуировочного; $W_1(\alpha_{tb})$, $W_3(\alpha_{tb})$ — значения мощностей нагревателя, соответствующие $(\lambda_{tb} l_{tb})_1 =$ $= 5 \cdot 10^{-2}$ Вт / К и $(\lambda_{tb} l_{tb})_3 = 0,2$ Вт / К.

Задача минимизации функционала (9) в пространстве параметров x_1 , x_3 и k_3 была решена с использованием алгоритма Хука-Дживса [1]. На рисунке 3 приведены зависимости оптимальных значений x_1 , x_3 и k_3 от коэффициентов теплоотдачи α_{tb} . Коэффициент α_{tb} определяется в данном случае по формуле

Рис. 3. Зависимости оптимальных значений x_1 , x_3 и k_3 от коэффициента теплоотдачи $lpha_{_{tb}}$

$$\alpha_{tb} = 1250 (J_{lq} F_{tb})^{0.8}, \qquad (10)$$

где F_{tb} - площадь сечения трубопровода.

Полученные результаты не дают возможности полного исключения влияния изменения теплопроводности трубопровода в рассматриваемых диапазонах изменения α_{tb} и $\lambda_{tb} l_{tb}$. Практический интерес представляет случай постоянства x_1 , x_3 и k_3 во всём диапазоне измеряемого расхода. Причём с целью снижения времени переходных процессов в системе нагреватель - термопреобразователи с температурой T_1 и T_3 желательно иметь минимальные значения координат x_1 и x_3 .

При минимально возможном для рассматриваемого первичного преобразователя значения $x_1 = 1 \cdot 10^{-2}$ м параметры x_3 и k_3 имеют следующие оптимальные величины: $x_3 = 9 \cdot 10^{-2}$ м и $k_3 = 4,7$ для коэффициента теплоотдачи $\alpha_{tb} = 35 - 200$ Вт/(м²·K). На рисунке 4 даны границы разброса $W_{tb}(\alpha_{tb})$ в зависимости от произведения теплопроводности и толщины трубопровода $(\lambda_{tb} l_{tb})_0 =$ = 0,137 Вт/К; $(\lambda_{tb} l_{tb})_1 = 0,1$ Вт/К; $(\lambda_{tb} l_{tb})_3 =$ = 0,175 Вт/К при значениях $x_1 = 1 \cdot 10^{-2}$ м; $x_3 = 9 \cdot 10^{-2}$ м и $k_3 = 4,7$. Диапазон изменения теплопроводности трубопровода выбран с учётом реального разброса характеристик λ_{tb} и l_{tb} для трубопровода из алюминиевого сплава с $l_{tb} = 1 \cdot 10^{-3}$ м.

Вторичный преобразователь расхода представляет собой систему автоматическо-

Рис. 4. Границы разброса W_{tb} в зависимости от произведения теплопроводности и толщины трубопровода $\lambda_{tb} l_{tb}$ и коэффициента теплоотдачи α_{tb}

го регулирования температуры трубопровода в определённых его сечениях, осуществляемого путём изменения электрического тока в нагревателе. В общем виде закон регулирования для вторичного преобразователя может быть представлен в виде

$$\frac{dI}{dt} = k_1 \Delta T_{set} - k_1 \Delta_{1,2} - k_1 k_3 \Delta_{3,2} - k_1 \tau_1 \frac{d\Delta_{1,2}}{dt} - k_1 k_3 \tau_1 \frac{d^2 \Delta_{3,2}}{dt^2},$$
(11)

где I — электрический ток в нагревателе; k_1, τ_1 — постоянные коэффициенты.

При разработке вторичного преобразователя сложной задачей является определение оптимальных значений k_1 и τ_1 , которые могут быть получены при использовании известных методов теории систем автоматического регулирования. Для нелинейных систем автоматического регулирования математи-

ческий аппарат, используемый при её синтезе, является довольно громоздким и не всегда обеспечивает получение желаемых характеристик системы. Кроме того, исследования некоторых характеристик системы наиболее удобно проводить путём её моделирования на компьютере и проведения численных экспериментов. Для этой цели в работе предлагается экспериментально-теоретический метод определения параметров рассматрива-

емой системы k_1 и τ_1 , приводящей к задаче оценивания вектора параметров

$$\Theta = [\vartheta_1, \vartheta_2]^T = [k_1, \tau_1]^T$$

математической модели преобразователя.

Структурная схема преобразователя приведена на рисунке 5. На ней при описании объекта регулирования использованы эквивалентные по амплитудно-фазовой характеристике инерционные звенья.

Математическая модель преобразователя описывается уравнением (11), где

Рис. 5. Структурная схема преобразователя расхода и температуры жидкости и воздуха

$$\frac{d\Delta_{1,2}}{dt} = \frac{AW_{tb}}{\tau_2} e^{-mx_1} - \frac{1}{\tau_2} \Delta_{1,2};$$

$$\frac{d^2 \Delta_{3,2}}{dt^2} = \frac{Ae^{-mx_3}W_{tb}}{\tau_3 \tau_4} - \frac{\tau_3 + \tau_4}{\tau_3 \tau_4} \frac{d\Delta_{3,2}}{dt} - \frac{\Delta_{3,2}}{\tau_3 \tau_4};$$

$$A = \frac{(e^{mL} - e^{-mL})}{4\pi d_{tb} L \lambda_{tb} l_{tb} m^2};$$
(12)
$$W_{tb} = I^2 R_{wrm} - k_a \Delta \alpha_{tb};$$

 $U_{ex} = I R_{wrm}$.

В уравнениях (12) k_2 , k_{α} , τ_2 , τ_3 , τ_4 — постоянные коэффициенты; U_{ex} — выходное напряжение нагревателя; R_{wrm} — сопротивление нагревателя; $\Delta \alpha_{tb}$ — изменение коэффициента теплоотдачи α_{tb} .

В основу метода положена параметрическая идентификация по кривым переходных процессов исследуемого преобразователя (рис. 6). Оценивание коэффициентов будем проводить путём минимизации функции невязки между заданными значениями изменения выходного напряжения ΔU_{ex} на нагревателе относительно $U_{ex,0}$ и прогнозом $\Delta \hat{U}_{ex}(t_k,\Theta)$:

$$\Phi(\Theta) = \sum_{k=1}^{N} \left(\Delta U_{ex,k} - \Delta \hat{U}_{ex}(t_k, \bar{\Theta}) \right)^T \left(\Delta U_{ex,k} - \Delta \hat{U}_{ex}(t_k, \bar{\Theta}) \right),$$
(13)

где $\Delta U_{ex,k}$ - заданные изменения выходного напряжения в моменты времени t_k , k = 1,..., $N; \Delta \hat{U}_{ex}(t_k, \vec{\Theta})$ - решение уравнения (11) в моменты времени t_k .

Для минимизации функции (13) применялся алгоритм композиции методов наискорейшего спуска, квазиньютоновского и координатного. В квазиньютоновском методе оценка матрицы Гессе вторых частных производных проводится по формуле Бройдена-Флетчера-Гольдфарба-Шэнно [2].

В процессе минимизации с использованием квазиньютоновского алгоритма на

Рис. 6. Кривые переходного процесса вторичного преобразователя расхода: ΔU_{ex} — заданные значения изменения выходного напряжения на нагревателе; $\Delta \hat{U}_{ex}(t_k, \vec{\Theta})$ — рассчитанные значения напряжения

каждой итерации требуются вычисления градиента функции невязки $\Phi(\Theta)$. Компоненты градиента функции (13) вычисляются по формуле

$$\frac{\partial \Phi}{\partial \theta_i} = -2\sum_{k=1}^{N} \left(\Delta U_{ex,k} - \Delta \hat{U}_{ex}(t_k, \vec{\Theta}) \right)^T \frac{\partial \Delta U_{ex}(t_k, \vec{\Theta})}{\partial \theta_i},$$
(14)

где
$$H_{i,k} = \frac{\partial \Delta \hat{U}_{ex}(t_k, \Theta)}{\partial \Theta_i}$$
 — производные от

решения уравнения (11) по \mathcal{G}_i (*i* = 1, 2), которые называются функциями чувствительности [3].

Функции чувствительности являются решениями дифференциальных уравнений (уравнений чувствительности [3]), которые получаются в результате дифференцирования уравнения (11) по 9_i.

В данной работе для вычисления функций чувствительности применяется подход, основанный на современном решении уравнения (11) и уравнений чувствительности. При этом используется экономичный алгоритм [4], основанный на применении метода Розенброка второго порядка аппроксимации [5].

Для доказательства эффективности предложенного алгоритма в рассматриваемых условиях проведено математическое моделирование процедуры оптимального оценивания вектора параметров модели (11) по методике, описанной в работе [6]. При этом исследована сходимость результатов оценивания параметров к действительным Θ_0 или равным им эталонным значениям Θ_{rf} . Эталонные Θ_{rf} и начальные значения Θ_{int} элементов вектора параметров были приняты равными величинам, приведённым на рисунке 7. Измерение и расчёт ΔU_{ex} проведены для дискретных моментов времени с интервалом $\Delta t = 0,1$ с. Анализ сходимости резуль-

Рис. 7. Оценивание параметров 9_1 , 9_2 модели (11)

татов оценивания параметров показал устойчивую сходимость процедуры параметрической идентификации при различном задании начальных значений вектора параметров: разница между оценками параметров $\hat{\Theta}$ и эталонными значениями Θ_{rf} не превышает 1% от эталонных значений Θ_{rf} .

Результаты параметрической идентификации модели (12) по предложенной методике имеют следующие значения:

 $\Theta = (0,6; 6,6)^T$.

Определение погрешностей оценок параметров Θ проведём по методике, описанной в работе [6]. Она основана на построении и анализе ковариационной матрицы погрешностей оценок.

Диагональные элементы матрицы являются дисперсиями оценок параметров, а остальные позволяют рассчитать их взаимные корреляции. По значениям дисперсий определялись доверительные интервалы I_{Θ} при доверительной вероятности $\beta = 0.95$.

Расчётные погрешности оценок параметров при погрешности измерения расхода $\delta = 3\%$ не превышают $\delta_{\Theta} = 5\%$.

Таким образом, разработан термоконвективный преобразователь расхода и температуры жидкости и воздуха, оценены значения параметров первичного и вторичного преобразователей с использованием алгоритма композиции методов наискорейшего спуска, квазиньютоновского и координатного.

Библиографический список

1. Химмельблау, Д. Прикладное нелинейное программирование [Текст]/ Д. Химмельблау. - М.: Мир, 1975.-534 с.

2. Гилл, Ф. Практическая оптимизация [Текст] / Ф. Гилл, У. Мюррей, М. Райг. - М.: Мир, 1985. – 509 с.

3. Розенвассер, Е. Н. Чувствительность систем управления [Текст] / Е. Н. Розенвассер, Р, М, Юсупов. - М.: Наука, 1961. - 44 с.

4. Гусев, С. А. Алгоритм и идентификации параметров жёстких систем обыкновенных дифференциальных уравнений [Текст] / С. А. Гусев, Г. В. Демидов. - Новосибирск, 1983. - 17 с. (Препринт / ВЦ АН СССР, № 484).

5. Демидов, Г. В. Оценка ошибки одношаговых методов интегрирования обыкновенных дифференциальных уравнений [Текст] / Г. В. Демидов, Е. А. Новиков // Численные методы механики сплошной среды. - Новосибирск, 1985. - Т. 16, № 1. - С. 27-42.

6. Бард, И. Нелинейное оценивание параметров [Текст] / И. Бард. – М.: Статистика, 1979. – 349 с.

TRANSDUCER OF FLUID AND AIR CONSUMPTION AND TEMPERATURE IN PIPELINES

© 2011 V. N. Nikolayev, Yu. N. Kabanov

Federal State Unitary Enterprise "S. A. Chaplygin Siberian Aeronautical Research Institute"

Optimization of parameters of a thermo-convective transducer of fluid and air consumption and temperature are examined, parametric identification errors are evaluated.

Mathematical model, transducer of consumption and temperature, thermo-convective method, temperature transducer, pipeline, parametric identification, parametric identification error.

Информация об авторах

Николаев Владимир Николаевич, кандидат технических наук, начальник сектора ФГУП «Сибирского научно – исследовательского института авиации им. С.А. Чаплыгина». E-mail: nikvla50@mail.ru. Область научных интересов: математическое моделирование теплового состояния отсеков и систем самолёта при проектировании, лётных испытаниях и математическое моделирование электромагнитной совместимости радиоэлектронного оборудования самолёта.

Кабанов Юрий Николаевич, ведущий инженер ФГУП «НИИЭП». Е-mail: unikab@bk.ru. Область научных интересов: исследование и разработка электротермических преобразователей водности воздушного потока и интенсивности обледенения летательных аппаратов.

Nikolayev Vladimir Nikolayevitch, candidate of technical sciences, head of a sector at the Federal State Unitary Enterprise "S. A. Chaplygin Siberian Aeronautical Research Institute". E-mail: nikvla50@mail.ru. Area of research: mathematical simulation of the thermal state of aircraft bays and systems during development work and flight tests, mathematical simulation of electromagnetic compatibility of aircraft radioelectronic equipment.

Kabanov Yuri Nikolayevitch, leading engineer of Federal State Unitary Enterprise "NIIEP". E-mail: unikab@bk.ru. Area of research: research and development of electrothermal transducers of airflow water content and intensity of aircraft icing.