УДК 62-752

СВОБОДНЫЕ КОЛЕБАНИЯ СИСТЕМЫ С РЕЛАКСАЦИОННЫМ ВЯЗКИМ ДЕМПФИРОВАНИЕМ

© 2011 Ф. М. Шакиров

Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)

Рассмотрена динамика свободного движения механической колебательной системы, у которой масса вывешена над основанием с помощью подвески в виде реологической модели Пойнтинга-Томсона.

Свободные колебания, релаксационное демпфирование, вязкое демпфирование.

Рассмотрим динамику свободного движения механической колебательной системы, у которой масса вывешена над основанием с помощью подвески в виде реологической модели Пойнтинга-Томсона (так называемой «Зенера») (рис.1).

В дальнейших рассуждениях будем полагать, что масса основания значительно превышает массу объекта и обе они недеформируемые; объект является точечной массой, а колебательная система имеет сосредоточенные параметры; элементы связи объекта с основанием обладают пренебрежимо малой массой; диссипативный элемент является демпфером вязкого трения, упругие элементы – линейные.

Рис. 1. Схема колебательной системы с упруговязкой подвеской в виде модели Пойнтинга–Томсона («Зенера»)

Свободные колебания рассматриваемого объекта описываются системой уравнений

$$\begin{cases} m\ddot{x}(t) + c_1 x(t) + c[x(t) - x_1(t)] = 0\\ c[x(t) - x_1(t)] = d\dot{x}_1(t), \end{cases}$$
(1)

преобразуемой к дифференциальному уравнению третей степени:

$$\frac{md}{c}\ddot{x}(t) + m\ddot{x}(t) + d\frac{c+c_1}{c}\dot{x}(t) + c_1x(t) = 0$$
(2)

Здесь m – масса объекта; d – коэффициент вязкого демпфирования; c, c_1 – соответственно коэффициенты жесткости релаксационного и несущего упругих элементов; x(t), $x_1(t)$ – смещение объекта и элемента связи релаксационной пружины с демпфером из равновесного положения, соответственно; $\dot{x}(t), \ddot{x}(t)$ – первая, вторая и третья производные по времени от функции x(t); $\dot{x}_1(t)$ – производная по времени от функции $x_1(t)$.

Введя параметры соотношения жесткостей $N=c/c_1$, собственной частоты $\omega_0{}^2=c_1/m$ и безразмерного коэффициента вязкого демпфирования $\xi=0.5d/(mc_1)^{0.5}$, представим уравнение (2) в следующем виде

$$\ddot{x}'(t) + \frac{N\omega_0}{2\xi} \ddot{x}(t) + (1+N)\omega_0^2 \dot{x}(t) + (3) + \frac{N\omega_0^3}{2\xi} x(t) = 0.$$

Уравнение (3) с начальными условиями $x(0)=x_0, \dot{x}(0)=\dot{x}_0, \ddot{x}(0)=\ddot{x}_0$ составляет задачу Коши – математическую модель свободных колебаний представленной выше системы. Применив к уравнению (3) преобразование Лапласа [1], получим во множестве преобразований уравнение:

$$\begin{bmatrix} s^{3} + \frac{N\omega_{0}}{2\xi}s^{2} + (1+N)\omega_{0}^{2}s + \frac{N\omega_{0}^{3}}{2\xi} \end{bmatrix} \widetilde{x}(s) = \\ = \begin{bmatrix} s^{2} + \frac{N\omega_{0}}{2\xi}s + (1+N)\omega_{0}^{2} \end{bmatrix} x_{0} + \\ + \left(s + \frac{N\omega_{0}}{2\xi}\right) \dot{x}_{0} + \ddot{x}_{0} , \qquad (4)$$

где $\tilde{x}(s)$ – изображение функции x(t). Характер свободных колебаний рассматриваемой механической системы зависит от вида корней характеристического уравнения:

$$s^{3} + \frac{N\omega_{0}}{2\xi}s^{2} + (1+N)\omega_{0}^{2}s + \frac{N\omega_{0}^{3}}{2\xi} = 0.$$
 (5)

Дискриминант *D* кубического уравнения (5) равен [2]:

$$D = \frac{\omega_0^6}{27(2\xi)^4} \Big[16(1+N)^3 \xi^4 - (N^2 + 20N - 8)\xi^2 N^2 + N^4 \Big].$$
(6)

Из выражения (6) видно, что знак дискриминанта определяется знаком многочлена:

 $16(1+N)^{3}\xi^{4} - (N^{2} + 20N - 8)\xi^{2}N^{2} + N^{4}$, (7) из равенства нулю которого определим значения параметра ξ , обращающие многочлен (7) в ноль:

$$\xi_{1,2}^{2} = \frac{N^{2}(N^{2} + 20N - 8) \pm N^{2}(N - 8)\sqrt{N(N - 8)}}{32(1 + N)^{3}}.(8)$$

Анализ выражений (6) и (8) позволяет выявить виды корней уравнения (5). Последние, в свою очередь, определяют варианты поведения рассматриваемой колебательной системы при свободном движении в зависимости от уровня демпфирования в ней:

I. N < 8, то есть жесткость релаксационной пружины меньше восьмикратной жесткости несущей пружины ($c < 8c_1$).

В этом случае дискриминант D > 0 при любой величине параметра ξ , а уравнение (5) имеет один действительный и два комплексно сопряженных корня [2]:

$$s_{k} = y_{k} - r/3,$$

r_{T} = $k = 1,2,3;$
 $y_{1} = u + v;$
 $y_{2} = -0,5 (u + v) + 0,5 \cdot 3^{0,5} (u - v) i;$
 $y_{3} = -0,5(u + v) - 0,5 \cdot 3^{0,5} (u - v) i;$
 $u = \sqrt[3]{-0,5q + \sqrt{D}}; \quad v = \sqrt[3]{-0,5q - \sqrt{D}};$
 $q = N\omega_{0}^{3} [18(2-N)\xi^{2} + N^{2}] / 108\xi^{3};$
 $r = N\omega_{0} / 2\xi.$

Следовательно, при любом уровне вязкого демпфирования рассматриваемая система совершает монотонно затухающие колебания в соответствии с зависимостью

 $x(t) = A_1 e^{\alpha 1 t} + e^{\alpha 2 t} [B_1 \sin(\beta t) + C_1 \cos(\beta t)],$ (9) где

$$\alpha_1 = s_1 = u + v - r / 3,$$

 $\alpha_2 = Re [s_2] = Re [s_3] = -0,5(u + v) - r / 3,$

 $\beta = Jm [s_2] = Jm [s_3] = 0,5 \cdot 3^{0,5} \cdot (u - v);$ A_1, B_1, C_1 – постоянные, зависящие от начальных условий и параметров системы:

$$A_{1} = \frac{\ddot{x}_{0} - 2\alpha_{2}\dot{x}_{0} + (\alpha_{2}^{2} + \beta^{2})x_{0}}{(\alpha_{1} - \alpha_{2})^{2} + \beta^{2}},$$

$$B_{1} = \frac{(\alpha_{2} - \alpha_{1})[\ddot{x}_{0} - (\alpha_{1} + \alpha_{2})\dot{x}_{0} + \alpha_{1}\alpha_{2}x_{0}] + \beta^{2}(\dot{x}_{0} - \alpha_{1}x_{0})}{\beta[(\alpha_{1} - \alpha_{2})^{2} + \beta^{2}]},$$

$$C_{1} = \frac{\alpha_{1}(\alpha_{1} - 2\alpha_{2})x_{0} + 2\alpha_{2}\dot{x}_{0} - \ddot{x}_{0}}{(\alpha_{1} - \alpha_{2})^{2} + \beta^{2}}.$$

Первый член выражения (9) описывает апериодическое затухающее движение. Быстрота затухания зависит от величины $|\alpha_1|$, а параметр $|1/\alpha_1|$ представляет собой время, в течение которого первое слагаемое решения (9) уменьшается в *е* раз. Вторая составляющая выражения (9) описывает затухающие колебания того же типа, что и в колебательной системе с упруговязкой подвеской в виде модели Кельвина [3].

II. $N \ge 8$, то есть жесткость релаксационной пружины не меньше восьмикратной жесткости несущей пружины ($c \ge 8c_1$).

При этом возможны следующие случаи.

II.1. Дискриминант D > 0 при $\xi > \xi_1$ или $\xi < \xi_2$.

Уравнение (5) имеет те же решения, что и в варианте I, а колебательная система ведет себя соответствующим образом.

II.2.а. Дискриминант D = 0 при $\xi = \xi_1$ или $\xi = \xi_2$, но $\xi \neq 4/(27)^{0,5}$.

Уравнение (5) имеет один действительный корень и один двукратный действительный корень [2]:

$$s_1 = y_1 - r/3, \quad s_2 = s_3 = y_2 - r/3,$$

где $y_1 = 2u_2; \quad y_2 = y_3 = -u_2; \quad u_2 = v_2 = \sqrt[3]{-0.5q}.$

В динамическом отношении система находится в промежуточном состоянии на границе между колебательностью и апериодичностью и совершает движение по закону: $x(t) = A_2 e^{s1t} + e^{s2t} (B_2 + C_2 t),$ (10) где зависящие от параметров системы и начальных условий константы A_2, B_2, C_2 имеют вид:

$$\begin{aligned} A_2 &= [\ddot{x}_0 - s_2(2\dot{x}_0 - s_2x_0)]/(s_1 - s_2)^2, \\ B_2 &= [-\ddot{x}_0 + 2s_2\dot{x}_0 + s_1(s_1 - 2s_2)x_0]/(s_1 - s_2)^2, \\ C_2 &= [\ddot{x}_0 - (s_1 + s_2)\dot{x}_0 + s_1s_2x_0]/(s_2 - s_1). \end{aligned}$$

Второе слагаемое выражения (10) опи-

сывает движение того же типа, что и в колебательной системе с упруговязкой подвеской в виде модели Кельвина [4]. На это движение накладывается апериодическое движение, описываемое первым слагаемым.

II.2.б. Дискриминант D = 0 при N = 8 и $\xi = 4/(27)^{0.5}$.

Уравнение (5) имеет один трехкратный действительный корень [2]:

 $s_1 = s_2 = s_3 = s = -r/3.$

Колебательная система находится в точке границы перехода от колебательного к апериодическому движению, а поведение системы описывается выражением:

 $x(t) = e^{st} (A_3 + B_3 t + C_3 t^{2}),$ (11) где константы A_3, B_3, C_3 зависят от параметров системы и начальных условий:

$$A_3 = x_0,$$

 $B_3 = \dot{x}_0 - sx_0,$
 $C_3 = 0.5\ddot{x}_0 - s\dot{x}_0 + 0.5s^2x_0.$
II.3. Дискриминант $D > 0$ при
 $\xi_2 < \xi < \xi_1.$

Уравнение (5) имеет три различных действительных корня [2]:

$$s_{k} = y_{k} - r/3,$$

r_{De} $k = 1,2,3;$
 $y_{1} = 2\sqrt{-p/3}\cos(\varphi/3),$
 $y_{2} = 2\sqrt{-p/3}\cos[(\varphi + 2\pi)/3],$
 $y_{3} = 2\sqrt{-p/3}\cos[(\varphi + 4\pi)/3],$

$$\varphi = \arccos(-q/2\rho),$$

$$\rho = -(p/3)^{1.5},$$

$$p = \omega_0^2 [12\xi^2(1+N) - N^2]/12\xi^2.$$

В этом случае система совершает апериодическое движение по следующей зависимости:

 $\begin{aligned} x(t) &= A_4 e^{s_1 t} + B_4 e^{s_2 t} + C_4 e^{s_3 t}, \end{aligned} \tag{12}$ где константы A_4, B_4, C_4 определяются параметрами системы и начальными условиями: $A_4 &= [\ddot{x}_0 - (s_2 + s_3)\dot{x}_0 + s_2 s_3 x_0]/(s_1 - s_2)(s_1 - s_3), \\ B_4 &= [\ddot{x}_0 - (s_1 + s_3)\dot{x}_0 + s_1 s_3 x_0]/(s_1 - s_2)(s_3 - s_2), \\ C_4 &= [\ddot{x}_0 - (s_1 + s_3)\dot{x}_0 + s_1 s_2 x_0]/(s_1 - s_3)(s_2 - s_3). \end{aligned}$

Подводя итоги исследования динамического состояния рассматриваемой колебательной системы, можно отметить, что она обладает следующими существенными особенностями при своем свободном движении: 1) при величинах соотношения жесткостей упругих элементов из диапазона $c < 8c_1$ независимо от уровня вязкого демпфирования в системе ее свободное движение имеет характер монотонно затухающих колебаний;

2) при соотношении жесткостей упругих элементов $c \ge 8c_1$ система может совершать монотонно затухающие колебательные движения либо апериодические движения или находиться на границе между колебательным и апериодическим движением в зависимости от величины параметра ξ .

Существенным при этом является то, что граница перехода имеет двузначность (верхнюю и нижнюю составляющие) в отличие от случая колебательной системы с подвеской в виде упруговязкой модели Кельвина, когда граница перехода от колебательного движения к апериодическому однозначна.

Рассматриваемая система при значениях параметра ξ , попадающих внутрь интервала, границы которого определяются с помощью выражения (8), совершает апериодические движения. При значениях параметра ξ вне указанного интервала движения системы – колебательные с затуханием. А значения параметра ξ на концах упомянутого интервала обозначают границу перехода от одного вида движения к другому.

При $c = 8c_1$ интервал вырождается, а его границы сходятся в одну точку со значением $\xi_1 = \xi_2 = 4/27^{0.5}$.

Выявленные особенности динамического состояния рассматриваемой колебательной системы позволяют более адекватно (нежели при использовании модели на базе упруговязкой схемы Кельвина) прогнозировать поведение проектируемых механических объектов, а также рассчитывать траектории свободного движения в существующих конструкциях, в которых вывешенные массы вместе с их связями могут быть аппроксимированы представленной выше упруговязкой моделью.

Библиографический список

1. Бессекерский, В.А. Теория систем автоматического регулирования [Текст] / В.А. Бессекерский, Е.П. Попов. – М.: Наука, 1966. – 992 с.

2. Бронштейн, И.Н. Справочник по математике [Текст]: справочник / И.Н. Бронштейн, К.А. Семендяев. – М.: Наука, 1980. – 976 с. 3. Пановко, Я.Г. Основы прикладной теории колебаний и удара [Текст] / Я.Г. Пановко. – Л.: Машиностроение, 1976. – 320 с.

4. Болотник, Н.Н. Оптимизация амортизационных систем [Текст] / Н.Н. Болотник. – М.: Наука, 1983. – 257 с.

FREE VIBRATION OF RELAXATIONAL AND VISCOUS-DAMPED SYSTEM

© 2011 F. M. Shakirov

Samara State Aerospace University named after academician S.P. Korolyov (National Research University)

The paper describes a viscous relaxation damping model and results of the study on its basis of free vibration of system.

Free vibration, relaxation damping, viscous damping.

Информация об авторах

Шакиров Фарид Мигдетович, кандидат технических наук, доцент, Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет). Тел.: (846) 334-47-77. Область научных интересов: динамика виброзащитных систем с конструкционным демпфированием.

Shakirov Farid Migdetovich, Candidate of Technical Sciences, Associate Professor, Samara State Aerospace University named after academician S.P. Korolyov (National Research University). Phone: (846) 334-47-77. Area of research: dynamic of system, Vibration, relaxation hysteretic damping.