УДК 62-752

МОДЕЛИРОВАНИЕ ДИНАМИКИ СИСТЕМЫ С РЕЛАКСАЦИОННЫМ ГИСТЕРЕЗИСНЫМ ДЕМПФИРОВАНИЕМ

© 2011 Ф. М. Шакиров

Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)

Приведены результаты исследований колебательной системы с гистерезисным демпфированием и виброзащитным устройством при помощи модели Пойнтинга-Томпсона.

Вибрация, релаксационное гистерезисное демпфирование, оптимизация.

Исследования энергодиссипационных характеристик конструкционных и эластомерных материалов [1,2] показывают, что свойство внутреннего трения во многих из них (а в некоторых случаях и внешнего сухого трения) может быть описано с помощью вязкого демпфера, у которого коэффициент вязкого демпфирования *d* изменяется обратно пропорционально частоте возмущающего сигнала ω : $d = k/\omega$, где k - коэффигистерезисного демпфирования. циент Демпферная сила в этом случае пропорциональна относительному перемещению, но находится в фазе с относительной скоростью через демпфер. А рассеянная за цикл колебаний энергия независима от частоты колебаний, в отличие от вязкого демпфирования, диссипированная энергия при котором линейно зависит от ω .

Виброзащитное устройство (ВЗУ) в форме модели Пойнтинга–Томпсона (иначе -Зенера) с гистерезисным типом демпфирования может служить для описания свойств, находящихся в условиях гармонического вибровозмущения составных подвесок в виде комбинации элемента из сплошного материала (эластомерного или конструкционного) и параллельного ему упругого элемента.

Схема колебательной системы (КС) с гистерезисным демпфированием и ВЗУ в форме модели Пойнтинга-Томпсона дана на рис. 1. Допущения математической модели: масса основания значительно больше массы объекта и обе недеформируемые; объект является точечной массой, а КС имеет сосредоточенные параметры; элементы связи объекта с основанием обладают пренебрежимо малой массой; упругий и диссипативный элементы линейны; колебания являются установившимися однонаправленными.

Движение КС описывается системами уравнений:

для кинематического возмущения (рис. 1,a) –

$$\begin{array}{l} m\ddot{x}_{2}(t) + c_{1}[x_{2}(t) - x_{1}(t)] + c[x_{2}(t) - x_{3}(t)] = 0 \\ \omega c[x_{2}(t) - x_{3}(t)] = k[\dot{x}_{3}(t) - \dot{x}_{1}(t)] \end{array} \right\},$$
(1)

для силового возмущения (рис. 1,б) -

$$\begin{array}{l} m\ddot{x}_{2}(t) + c_{1}x_{2}(t) + c[x_{2}(t) - x_{3}(t)] = F(t) \\ \omega c[x_{2}(t) - x_{3}(t)] = k\dot{x}_{3}(t) \end{array} \right\},$$
(2)

где *m*- масса защищаемого объекта; *c*, *c*₁ - соответственно релаксационная и статическая жесткости; $x_1(t)$, $\dot{x}_1(t)$ - перемещение основания и его скорость; $x_2(t)$, $\ddot{x}_2(t)$ - перемещение и ускорение объекта; $x_3(t)$, $\dot{x}_3(t)$ – перемещение связи между упругим и диссипативным элементами и ее скорость, F(t) внешняя сила, *t* - время.

Из передаточных функций (ПФ) и связанных с ними частотных характеристик [3], которые можно получить на основании систем уравнений (1) и (2), рассмотрим наиболее часто используемые для оценки прочности и структурной целостности объекта основания и их связи. При кинематическом возмущении это следующие ПФ: W_A (s) - по абсолютному и W_R (s) - по относительному параметру (перемещение, скорость, ускорение); здесь s – комплексная величина, отражающая применение процедуры преобразования Лапласа. В случае силового возмущения: W_{II} (s) - по то ускорению.

Рис. 1. Схема КС с гистерезисным демпфированием и ВЗУ в форме модели Пойнтинга-Томсона (Зенера) при различных направлениях осцилляции: а - вертикальной, б - горизонтальной

Указанные ПФ, модули и аргументы частотных ПФ приведены в табл. 1. Здесь μ - коэффициент передачи, v - коэффициент динамического усиления, $\eta = \omega/\omega_0$ - безразмерная частота возмущения,

$$A = \frac{2\overline{\xi}}{N\omega_0^3} s^3 + \frac{1}{\omega_0^2} s^2 + \frac{N+1}{N} \cdot \frac{2\overline{\xi}}{\omega_0} s + 1;$$

$$B = (1 - \eta^2)^2 + \left[\zeta \left(N + 1 - \eta^2\right) / N\right]^2;$$

 φ - угол сдвига фаз; $\omega_0 = (c_1/m)^{0.5}$ - собственная частота недемпфированной КС; $N = c/c_1$ – безразмерная жесткость; $\overline{\xi} = \zeta / 2\eta$ - частотно-зависимый безразмерный коэффициент демпфирования; $\zeta = k/c_1$ - коэффициент потерь; индексы частотных функций соответствуют индексам ПФ. Графики АЧХ по табл. 1 представлены на рис. 2.

Выражения резонансных значений модулей частотных ПФ и соответствующих им безразмерных резонансных частот в функции коэффициента потерь ζ и безразмерной жесткости N представлены в табл. 2. Графики указанных функций приведены на рис. 3...6.

Аналитические выражения оптимальных величин коэффициента потерь $\zeta_{O\Pi T}$, которые обеспечивают соблюдение условий минимаксов АЧХ, получаются подстановкой в выражение резонансной частоты η_p по табл. 2 частотной координаты инвариантной точки. Координата определяется из условия равенства ординат предельных резонансов АЧХ.

Выражения координат инвариантных точек и оптимальных значений коэффициента потерь как функций безразмерной жесткости представлены в табл. 3 для рассмотренных выше модулей частотных ПФ. Графическая иллюстрация указанных функций приведена на рис. 7. Объем публикации не позволяет привести полный анализ представленного аналитического и графического материала. Поэтому ограничимся лишь формулировкой выводов на его основе.

Поведение КС с ВЗУ в форме модели Пойнтинга–Томпсона (Зенера) и гистерезисным демпфированием во многом похоже на поведение КС с вязким демпфированием и тем же видом ВЗУ, но имеет и явные отличия. Так, для рассмотренных АЧХ характерно:

1) при нулевом ($\zeta = 0$) и бесконечном ($\zeta = \infty$) гистерезисном демпфировании АЧХ имеют предельные положения, через точку пересечения которых – инвариантную точку – проходят линии АЧХ при конечных уровнях демпфирования ($0 < \zeta < \infty$) – рис.2. Предельный резонанс при $\zeta = 0$ локализован на недемпфированной собственной частоте ω_0 , второй (при $\zeta = \infty$) – на частоте $\omega_\infty = = \omega_0 (1+N)^{0.5}$. Обе резонансные кривые по виду идентичны резонансной кривой консервативной КС;

2) с ростом уровня гистерезисного демпфирования в системе максимумы АЧХ вначале снижаются, проходят через минимум, совпадающий с инвариантной точкой и зависящий только от величины безразмерной жесткости N, а затем возрастают (рис.2...7). Безразмерные резонансные частоты при этом только возрастают (в отличие от случая вязкого демпфирования) от $\eta_p = 1$ при $\zeta = 0$ до $\eta_p = (1+N)^{0.5}$ при $\zeta = \infty$;

3) инвариантные точки АЧХ при гистерезисном демпфировании совпадают с инвариантными точками аналогичных АЧХ при вязком демпфировании в пределах одной и той же по структуре КС (рис. 7,а);

Нагру-	Перелаточная функция	Молуль частотной	Аргумент частотной ПФ (ФЧХ).
жение	W(s)	$\Pi \Phi$ (AYX): $\mu(\eta), \nu(\eta)$	$\phi(\eta)$
Кинематическое	$W_{A}(s) = \frac{\frac{N+1}{N} \cdot \frac{2\xi}{\omega_{0}} s + 1}{A}$	$\mu_{A}(\eta) = \sqrt{\frac{1 + \left[\frac{\zeta(N+1)}{N}\right]^{2}}{B}}$	$\varphi_{A}(\eta) = \begin{cases} - \operatorname{arctg}(\zeta \eta^{2} / Q), & \text{при } Q \ge 0 \\ -\pi - \operatorname{arctg}(\zeta \eta^{2} / Q), & \text{при } Q < 0 \end{cases}$ где $Q = 1 - \eta^{2} + \zeta^{2} (N + 1) (N + 1 - \eta^{2}) / N^{2}$
	$W_{R}(s) = \frac{-\frac{2\overline{\xi}}{N\omega_{0}^{3}}s^{3} - \frac{1}{\omega_{0}^{2}}s^{2}}{A}$	$\mu_{R}(\eta) = \sqrt{\frac{\eta^{4} + \left(\frac{\zeta \eta^{2}}{N}\right)^{2}}{B}}$	$ \varphi_{R}(\eta) = \begin{cases} - \operatorname{arctg}(\zeta / Q), & \text{при } Q \ge 0 \\ -\pi - \operatorname{arctg}(\zeta / Q), & \text{при } Q < 0, \\ \text{где } Q = 1 - \eta^{2} + \zeta^{2} (N + 1 - \eta^{2}) / N^{2} \end{cases} $
Силовое	$W_{\pi}(s) = \frac{\frac{2\overline{\xi}}{N\omega_0}s + 1}{A}$	$v_{\pi}(\eta) = \sqrt{\frac{1 + \left(\frac{\zeta}{N}\right)^2}{B}}$	$ \varphi_{\pi}(\eta) = \begin{cases} - \operatorname{arctg}(\zeta / Q), & \operatorname{при} Q \ge 0 \\ - \pi - \operatorname{arctg}(\zeta / Q), & \operatorname{при} Q < 0, \\ \operatorname{где} Q = 1 - \eta^{2} + \zeta^{2} (N + 1 - \eta^{2}) / N^{2} \end{cases} $
	$W_{CK}(s) = \frac{\frac{2\overline{\xi}}{N\omega_0^3}s^2 + \frac{1}{\omega_0}s}{A}$	$v_{CK}(\eta) = \sqrt{\frac{\eta^2 + \left(\frac{\zeta \eta}{N}\right)^2}{B}}$	$\varphi_{_{CK}}(\eta) = -2\pi + arctg \frac{1 - \eta^2 + \zeta (N + 1 - \eta^2) / N^2}{\zeta}$
	$W_{yc}(s) = \frac{\frac{2\overline{\xi}}{N\omega_{0}^{3}}s^{3} + \frac{1}{\omega_{0}^{2}}s^{2}}{A}$	$v_{yc}(\eta) = \sqrt{\frac{\eta^4 + \left(\frac{\zeta \eta^2}{N}\right)^2}{B}}$	$\varphi_{y_{C}}(\eta) = \begin{cases} -\pi - \operatorname{arctg}(\zeta / Q), & \text{при } Q \ge 0\\ -2\pi - \operatorname{arctg}(\zeta / Q), & \text{при } Q < 0, \end{cases}$ где $Q = 1 - \eta^{2} + \zeta^{2} (N + 1 - \eta^{2}) / N^{2}$

Таблица 1. Параметры передаточных функций

Таблица 2. Выражения резонансных значений передаточных функций

Резонансное значение	Безразмерная резо-
модуля частотной П Φ : μ_p , v_p	нансная частота: η_p
$\mu_{Ap} = \sqrt{[N^2 + (N+1)^2 \zeta^2](N^2 + \zeta^2)/N^4 \zeta^2}$	$\sqrt{\frac{N^2 + (N+1)\zeta^2}{N^2 + \zeta^2}}$
$\mu_{Rp} = \sqrt{[N^2 + (N+1)^2 \zeta^2](N^2 + \zeta^2)/N^4 \zeta^2}$	$\sqrt{\frac{N^2 + (N+1)^2 \zeta^2}{N^2 + (N+1)\zeta^2}}$
$v_{\Pi_p} = (N^2 + \zeta^2) / N^2 \zeta$	$\sqrt{\frac{N^2 + (N+1)\zeta^2}{N^2 + \zeta^2}}$
$v_{CK_{p}} = \sqrt{\frac{0,5(N^{2} + \zeta^{2})}{\sqrt{[N^{2} + (N+1)^{2}\zeta^{2}](N^{2} + \zeta^{2})} - N^{2} - (N+1)\zeta^{2}}}$	$\sqrt[4]{\frac{N^2 + (N+1)^2 \zeta^2}{N^2 + \zeta^2}}$
$v_{yC_p} = \sqrt{[N^2 + (N+1)^2 \zeta^2](N^2 + \zeta^2)/N^4 \zeta^2}$	$\sqrt{\frac{N^2 + (N+1)^2 \zeta^2}{N^2 + (N+1)\zeta^2}}$

Таблица 3. Выражения координат инвариантных точек и оптимальных значений коэффициента потерь

AIIV	Координаты инвариантных точек		Оптимальный коэффи-
АЧЛ	$\eta_{{\scriptscriptstyle HH}}(N)$	$W_{\rm HH}(N)$	циент потерь $\zeta_{O\Pi T}$
$\mu_{\scriptscriptstyle A}$, $\nu_{\scriptscriptstyle C}$	$\sqrt{2(N+1)/(N+2)}$	(N+2)/N	$N/\sqrt{N+1}$
$\mu_{\scriptscriptstyle R}$, $ u_{\scriptscriptstyle YC}$	$\sqrt{(N+2)/2}$	(N+2)/N	$N/\sqrt{N+1}$
V_{Π}	$\sqrt{(N+2)/2}$	2 / N	Ν
V_{CK}	$\sqrt{(N+2)/2}$	$\sqrt{2(N+2)}/N$	$N\sqrt{(N+4)/(3N+4)}$

4) один из пары низко- и высокочастотных модулей всех рассмотренных частотных ПФ зависит от гистерезисного демпфирования, второй – нет (в отличие от случая вязкого демпфирования), а темпы затухания низко- и высокочастотных колебаний равны соответствующим показателям консервативной КС (рис.2);

Рис.2. АЧХ по абсолютному (а) и относительному (б) параметрам (кинематическое возмущение), по перемещению (в), скорости (г) и ускорению (б) при силовом возмущении

Рис.3. Резонансные характеристики по абсолютному параметру при кинематическом возмущении

Рис.4. Резонансные характеристики по относительному параметру (кинематическое возмущение) и ускорению (силовое возмущение)

а б Рис.5. Резонансные характеристики по перемещению (силовое возмущение)

Рис. 6. Резонансные характеристики по скорости (силовое возмущение)

Рис.7. Координаты инвариантных точек (а) и оптимальные величины коэффициента потерь (б) в зависимости от параметра безразмерной жесткости

5) как и при вязком демпфировании, диапазоны низко- и высокочастотной виброизоляции являются функциями уровня демпфирования (параметра ζ) и безразмерной жесткости N (рис.2). Диапазоны виброизоляции в низкочастотной области не меньше, а в высокочастотной – не больше аналогичных диапазонов консервативной КС;

6) уровень гистерезисного демпфирования в КС можно оптимизировать при данном значении параметра N с целью достижения минимальной величины резонансного пика АЧХ – рис.3...7;

7) резонансные значения всех АЧХ мало чувствительны к изменению уровня демпфирования в окрестности оптимума ($\zeta_{O\Pi T}$) – рис.3...6;

8) при малых уровнях гистерезисного демпфирования ($\zeta < 0,2$) и величинах безразмерной жесткости N > 1,0 резонансные значения всех рассмотренных АЧХ очень близки (рис.3...6) и в пределах 10%-ой ошибки могут быть определены из выражения: $W_p(\zeta) \approx 1/\zeta$;

9) резонансные частоты функций $\mu_R(\eta)$, $v_{\Pi}(\eta)$, $v_{CK}(\eta)$, $v_{yC}(\eta)$ очень чувствительны к малым отклонениям гистерезисного демпфирования от оптимального значения ($\zeta_{O\Pi T}$), а резонансные частоты функций $\mu_A(\eta)$ и $v_C(\eta)$ - мало чувствительны (рис.3...6);

10) при малых величинах гистерезисного демпфирования ($\zeta < 0,1$) резонансные

частоты всех АЧХ приблизительно равны недемпфированной собственной частоте ω_0 для всех значений параметра N;

11) одновременное обеспечение относительной устойчивости резонансных значений АЧХ и их резонансных частот к флуктуациям гистерезисного демпфирования в окрестности оптимальной величины ($\zeta_{O\Pi T}$) возможно для функций $\mu_A(\eta)$ и $v_C(\eta)$, тогда как для функций $\mu_R(\eta)$, $v_{\Pi}(\eta)$, $v_{CK}(\eta)$, $v_{yC}(\eta)$ – нет (рис. 3...6).

При заданном параметре ω_0 , величина которого обычно зависит от статической осадки КС, выбор значений параметров ζ и N для рассматриваемой модели может иметь или не иметь компромиссного характера в зависимости от того, модуль какой частотной передаточной функции является при этом приоритетным.

Библиографический список

1. Писаренко, Г.С. Вибропоглощающие свойства конструкционных материалов [Текст]: справочник / Г.С. Писаренко, А.П. Яковлев, В.В. Матвеев. – Киев: Наукова Думка, 1971. – 375 с.

2. Чегодаев, Д.Е. Демпфирование [Текст] / Д.Е. Чегодаев, Ю.К. Пономарев. – Самара: СГАУ, 1997. – 334 с.

3. Динамические свойства линейных виброзащитных систем [Текст] / отв. ред. К.В. Фролов. – М.: Наука, 1982. – 208 с.

MODELING OF DYNAMICS OF SYSTEM WITH RELAXATION HYSTERETIC DAMPING

© 2011 F. M. Shakirov

Samara State Aerospace University named after academician S.P. Korolyov (National Research University)

The paper describes a hysteretic relaxation damping model and results of the study on its basis of dynamics of system.

Vibration, relaxation hysteretic damping, optimization.

Информация об авторах

Шакиров Фарид Мигдетович, кандидат технических наук, доцент, Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет). Тел.: (846) 334-47-77. Область научных интересов: динамика виброзащитных систем с конструкционным демпфированием.

Shakirov Farid Migdetovich, Candidate of Technical Sciences, Associate Professor, Samara State Aerospace University named after academician S.P. Korolyov (National Research University). Phone: (846) 334-47-77. Area of research: dynamic of system, Vibration, relaxation hysteretic damping.