ББК Ч214(2)713

ОСНОВНЫЕ НАПРАВЛЕНИЯ НАУЧНЫХ ИССЛЕДОВАНИЙ САМАРСКОГО ГОСУДАРСТВЕННОГО АЭРОКОСМИЧЕСКОГО УНИВЕРСИТЕТА

© 2002 Е. В. Шахматов

Самарский государственный аэрокосмический университет имени академика С. П. Королева

В статье представлены некоторые направления научных исследований, проводимых в СГАУ в последние годы, и отмечены основные научные школы.

Одной из наиболее точных оценок уровня развития любой страны современного мира и, самое главное, возможных перспектив её развития является состояние исследований и научно-технических разработок в аэрокосмической отрасли. Эта наукоёмкая отрасль аккумулирует самые современные достижения практически всех фундаментальных и прикладных наук - от физики и математики, философии и астрономии до материаловедения, динамики, прочности и надежности сложнейших конструкций, работающих в экстремальных условиях. Причём, полученные новые знания для решения задач аэрокосмической отрасли используются затем во многих отраслях и дают мощный толчок развитию новых технологий.

Здесь сочетаются интересы науки, промышленности, обороны, коммуникаций, энергетики, медицины, а также бизнеса и политики. В России осталось всего несколько регионов и вузов, способных производить технику, проводить научные исследования и готовить специалистов для аэрокосмической отрасли. Это уникальные островки высоких технологий, сохранившие энтузиастов науки и техники XXI века. К таким островкам относится Самара, где пока ещё сохраняется куст аэрокосмических предприятий и кузница уникальных для России кадров - Самарский государственный аэрокосмический университет имени академика С. П. Королева, созданный как Куйбышевский авиационный институт в 1942 году, когда на фронтах Великой Отечественной войны решалась судьба нашей Родины.

Сегодня судьба России как самостоятельной великой державы зависит от того,

сохраним ли мы стратегические отрасли, к которым, безусловно, относятся авиационная и ракетно-космическая. Сохраним, если будут работать предприятия, НИИ и вузы, а государство создаст для этого необходимые условия.

Самарский государственный аэрокосмический университет (СГАУ) на протяжении многих лет тесно сотрудничает с предприятиями аэрокосмического комплекса страны в области решения актуальных для производства научных проблем, подготовки инженерных кадров и кадров высшей квалификации. Совместно решаются задачи различной направленности в таких областях, как:

- аэродинамика, динамика полета, проектирование и технология изготовления авиационных и космических летательных аппаратов;
- конструкция, бортовые системы и оборудование летательных аппаратов;
- теоретические и экспериментальные исследования двигателей летательных аппаратов;
- моделирование и проектирование в двигателестроении;
 - двигатели внутреннего сгорания;
- специальные материалы для двигателестроения;
- технология производства, системы, узлы и агрегаты двигателей;
- технология производства деталей и узлов машин;
- лазерные и электронно-ионно-плазменные технологии;
- прессование, спекание и штамповка изделий из порошковых материалов;

- обработка поверхности пластическим деформированием;
- обработка изображений и компьютерная оптика;
- системы автоматизированного проектирования.

Совместные работы ученых нашего университета и представителей промышленности привели к новым техническим и технологическим решениям, которые были высоко оценены в различных отраслях производства.

Был создан новый материал МР (пористый металлический аналог резины), обладающий уникальными свойствами, сформулированы основы конструкционного демпфирования и виброзащиты конструкций, разработаны мероприятия по совершенствованию процессов горения в камерах сгорания авиационных и ракетных двигателей. В интересах производственных и эксплуатирующих организаций были решены многие задачи аэродинамики и теплообмена, оптимального управления движением космических летательных аппаратов, динамики пневмогидравлических и топливных систем, разработаны новые системы автоматизированного проектирования и расчета авиационных конструкций, технологические процессы изготовления элементов летательных аппаратов и двигателей, обработки изображений, компьютерных технологий широкого применения.

Проведенные исследования и созданные на их основе изделия использовались при создании самолетов Ту-154, Ту-144, Бе-30, Ил-96; первых в мире авиационных двигателей, работающих на водороде и сжиженном природном газе; ракеты-носителя "Энергия"; космических аппаратов, используемых для исследования природных ресурсов.

Вместе с тем ограничение в последние годы объемов финансирования потребовало выделить приоритетные направления научных исследований, наиболее востребованные современными производствами, что стало и своеобразным ориентиром при подготовке инженерных кадров в современных условиях.

Для концентрации усилий ученых университета на наиболее важных научных направлениях, повышения эффективности на-

учно-исследовательской работы в новых экономических условиях на базе нескольких научных подразделений университета за последние годы были созданы научно-исследовательские институты: акустики машин, авиационных конструкций, приборостроения, технологий и проблем качества. Причём НИИ акустики машин и НИИ технологий и проблем качества, являясь структурными подразделениями СГАУ, приняты под научнометодическое руководство Российской академии наук (РАН).

Из научных подразделений университета вышли академические НИИ: Институт систем обработки изображений РАН и Волжский филиал института металлургии и материаловедения имени А. А. Байкова.

Несмотря на высокую инертность российской образовательной системы, ориентирование на потребности современного производства всегда позволяло СГАУ готовить специалистов, востребованных производством и обществом. Причём исторически сложилось так, что высокий уровень подготовки специалистов обеспечивался благодаря единству учебного и научного процессов.

Подготовка инженерных кадров осуществляется в СГАУ на 10 факультетах по 27 специальностям 800 преподавателями, в числе которых более 100 докторов наук, профессоров. Для поддержки учебного процесса и научных исследований за последние годы в СГАУ осуществлено практически полное переоснащение подразделений университета средствами вычислительной техники, созданы современные компьютерные сети.

Развитая материальная база, уникальные экспериментальные стенды и современные информационные технологии позволяют ежегодно выпускать до 1000 молодых специалистов, которые соответствуют высоким требованиям предприятий и организаций.

СГАУ традиционно осуществляет подготовку преподавательских и научных кадров.

В университете функционируют 8 диссертационных советов по защите докторских диссертаций с правом приема и кандидатских диссертаций по 18 специальностям:

01.02.01 – теоретическая механика - по техническим наукам;

01.02.05 — механика жидкости, газа и плазмы - по техническим наукам;

01.02.06 - динамика, прочность машин, приборов и аппаратуры - по техническим наукам;

01.04.01 - приборы и методы экспериментальной физики - по техническим и физико-математическим наукам;

01.04.05 — оптика - по физико-математическим наукам;

05.02.22 – организация производства - по техническим и экономическим наукам;

05.02.23 – стандартизация и управление качеством продукции - по техническим наукам;

05.03.05 – технологии и машины обработки давлением - по техническим наукам;

05.07.02 — проектирование, конструкция и производство летательных аппаратов - по техническим наукам;

05.07.03 – прочность и тепловые режимы летательных аппаратов - по техническим наукам;

05.07.05 - тепловые, электроракетные двигатели и энергоустановки летательных аппаратов - по техническим наукам;

05.07.07 - контроль и испытание летательных аппаратов и их систем - по техническим наукам;

05.07.09 — динамика, баллистика, управление движением летательных аппаратов - по техническим наукам;

05.13.05 — элементы и устройства вычислительной техники и систем управления - по техническим наукам;

05.13.12 – системы автоматизации проектирования (в машиностроении) - по техническим наукам;

05.13.18 – математическое моделирование, численные методы и комплексы - по техническим и физико-математическим наукам;

08.00.05 — экономика и управление народным хозяйством (экономика, организация и управление предприятиями, отраслями и комплексами промышленности) - по экономическим наукам;

08.00.13 — математические и инструментальные методы экономики - по экономическим наукам.

Только в 2001 году докторские диссертации защитили 7 ученых университета, канди-

датские диссертации защитили 19 сотрудников и аспирантов университета. В аспирантуре университета обучается более 220 человек.

Важная роль отводится научно-исследовательской работе студентов. Ежегодно более 1000 студентов проводят научные исследования под руководством ведущих научно-педагогических сотрудников университета, которые представляют различные научные школы и научные направления университета.

Каждая научная школа заслуживает отдельного подробного описания, чего невозможно сделать в рамках одной статьи, поэтому остановлюсь лишь на некоторых научных направлениях, которые востребованы и даже в сегодняшних условиях обеспечивают основной научный выход — защиты диссертаций, публикации и рост объемов НИР (рис. 1, табл. 1).

Вместе с тем, хочу заметить, что достаточно подробные и интересные материалы о ведущих учёных, о научных школах и направлениях университета опубликованы в юбилейном сборнике «От КуАИ до СГАУ (1942 – 2002)», выпущенном в 2002 году.

Наиболее востребованными и широко применяемыми в авиационной и ракетно-космической технике разработками СГАУ остаются виброизоляторы из материала МР, первые изделия из которого были созданы А. М. Сойфером, В. Н. Бузицким и В. А. Першиным более сорока лет назад.

Следует отметить, что это одно из направлений научной школы профессора А. М. Сойфера, на базе которой в 1958 году была создана первая вузовская отраслевая научно-исследовательская лаборатория (ОНИЛ–1) вибрационной прочности и надёжности авиационных изделий.

ОНИЛ—1 университета является сегодня серийным производителем различных типов виброизоляторов для ракетно-космической техники. Уникальные возможности изделий из материала MP определяют и широкие области их применения:

- виброизоляция, термозащита и шумоглушение объектов и их элементов, преимущественно в аэрокосмической технике;
- эластичные металлопластмассовые опоры скольжения как с жидкостным охлаж-

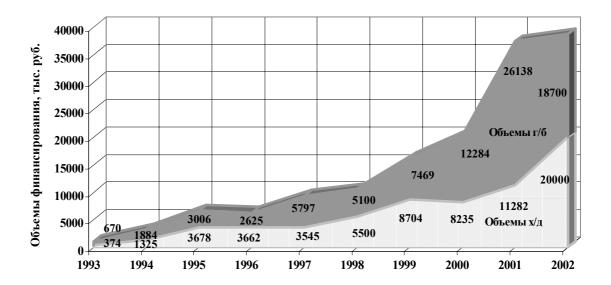


Рис. 1. Финансирование НИР

дением, так и самосмазывающие для турбороторных объектов различного назначения (подшипниковая, химическая и нефтегазовая промышленность);

- фильтровальная техника с точностью фильтрации до 10 мкм;
- уплотнительная техника (уплотнения; запорные, регулирующие и редуцирующие элементы пневмогидроарматуры), в том числе на криогенные среды и природный газ;
- теплопередающие системы и устройства (фитили тепловых труб, теплообменники).

Перспективными отраслями использования материала MP являются:

- очистка внутренних поверхностей трубопроводов от наслоений;
- создание «щеточных» уплотнений (взамен лабиринтных);
- использование в качестве катализаторов химических реакций;
- медицинская техника (электроды для электрофореза, зубные протезы);
- использование в качестве покрытия («дельфиновая» кожа) наружных поверхностей трубопроводов и обтекаемых жидкостью тел (затворы, регулирующие органы и пр.) для улучшения акустических и гидродинамических характеристик объектов.

В ОНИЛ–1 сложилось несколько научных школ и направлений – по исследованию

и устранению колебаний роторов турбомашин (профессор В. П. Иванов), по расчёту и проектированию гидрогазостатических опор роторов (профессор А. И. Белоусов), по исследованию и устранению пульсаций рабочих сред в гидрогазовых системах (академик РАН В. П. Шорин).

Причём на базе научной школы В. П. Шорина создан научно-исследовательский институт акустики машин (ИАМ), коллектив которого проводит теоретические и экспериментальные исследования по разработке методов и средств снижения виброакустических нагрузок в пневмо-гидромеханических системах. В ИАМ разработаны:

- гасители колебаний и гидроудара в гидросистемах, уменьшающие в 2-7 раз колебания давления;
- глушители шума выхлопа пневмосистем широкого назначения, снижающие шум струи отработанного воздуха на 28-32 дБА;
- упругодемпфирующие опоры и рукоятки, позволяющие изолировать корпус объекта от вибраций ротора и снижающие колебания в частотном диапазоне 10-5000 Гц в 8-10 раз;
- новые звукопоглощающие и изолирующие материалы с твёрдым звукопоглотителем складчатой структуры (типа z-гофра), которые позволяют решать задачи звукоизоляции и звукопоглощения без применения вредных

Таблица 1. Показатели НИР по годам

ПОКАЗАТЕЛЬ	1997	1998	1999	2000	2001
Подготовка кадров					
Защитили докторские диссертации	6	8	10	7	7
Защитили кандидатские диссертации	13	11	17	27	19
Научно-исследовательская работа студентов					
Количество докладов на студенческих научно-технических конференциях	1167	1109	1057	998	1175
Количество публикаций	226	215	289	263	325
Количество наград на Всероссийском конкурсе	12	16	13	17	17
Изобретательская деятельность					
Число заявок на объекты промышленной собственности	27	19	43	36	29
Решения о выдаче охранного документа	23	20	10	37	64
Получено патентов	32	20	32	25	39
Публикации, конференции					
В центральной печати (статьи)	87	82	124	103	127
В иностранных изданиях	53	47	37	39	58
Монографий	16	20	23	20	22
Участие в конференциях	116	117	111	132	144

рыхловолокнистых поглотителей на основе стекловолокна.

Востребованность разработок подтверждается решением конкретных задач: был уменьшен уровень шума на рабочем месте оператора станка специального назначения на 6-7 дБА (партнер – МКБ АЛИСС, г. Москва); снижен уровень шума автомата «Викерс» для навивки плоских пружин сидений автомобилей на 10-12 дБА (АО «АвтоВАЗ»); доведен до санитарных норм уровень шума на рабочих местах линии № 1 производства шоколадного полуфабриката и снижен с 98 до 84 дБА уровень шума на рабочих местах линии № 3 при формовке 25-граммового шоколада (АО «Россия», г. Самара); разработаны и испытаны в промышленных условиях глушители выхлопа пневмосистем прессового и металлургического производства, превзошедшие по техническим характеристикам отечественные и зарубежные аналоги (АО «АвтоВАЗ»); разработаны и внедрены пневмошлифовальные ручные машинки с пониженным (на 10-15 дБ) уровнем вибрации (ФГУП ГНПРКЦ «ЦСКБ – Прогресс», г. Самара); разработаны и внедрены вентиляционные и выхлопные глушители стационарной дизельной энергоустановки, обеспечивающие санитарные нормы по шуму на прилегающей жилой зоне (Сбербанк, г. Самара).

В университете сегодня работают два член-корреспондента РАН – В. А. Барвинок и В. А. Сойфер.

Технологическая научная школа В. А. Барвинка широко внедряет свои разработки, среди которых:

- технология нанесения износостойких плазменных покрытий на корпусные детали роторно-поршневого двигателя;
- мобильная малогабаритная установка плазменного напыления;
- технология диффузионной сварки и ремонта роторов турбин малоразмерных турбоагрегатов;
- технология термовакуумной клиновой сварки биметаллических трубных переходников;

- технология диффузионной пайки в вакууме металлокерамических датчиков;
- технология диффузионной сварки биметаллических токосъёмников электроподстанций;
- технологии штамповки полиуретаном деталей из листовых, трубчатых и профильных заготовок;
- износостойкие вакуумные ионно-плазменные покрытия;
- ионно-плазменная вакуумная технология нанесения многослойных электропроводных покрытий на детали из полимеров и углекомпозиционных материалов для радио-электрооборудования космических аппаратов;
- ионно-плазменная вакуумная технология нанесения многослойного радиоотражающего покрытия для антенн космических аппаратов из углеродного композиционного материала.

Научная школа В. А. Сойфера проводит фундаментальные исследования по следующим основным направлениям:

- математическое моделирование процессов управления пространственно-временными параметрами волновых полей;
- разработка методов решения прямых и обратных задач дифракции для расчёта плос-

ких оптических элементов;

- решение проблем дискретизации волновых полей и установление связей дискретных и непрерывных представлений;
- разработка методов спектрального анализа и управления поперечно-модовым составом волновых полей в волоконных световодах, резонаторах лазеров и градиентных средах;
- разработка физико-математических основ синтеза дифракционного микрорельефа плоских оптических элементов;
- разработка математических методов, алгоритмов и устройств обработки изображений;
- разработка информационных технологий создания дифракционных оптических элементов и обработки изображений.

В 2002 году СГАУ стал победителем конкурса на получение гранта CRDF на создание научно-отраслевого центра «Математические основы дифракционной оптики и обработки изображений».

В настоящей статье были отмечены только научные исследования, проводимые в СГАУ и получившие академическое признание. В последующих выпусках сборника «Вестника» будут представлены и другие направления научных исследований в СГАУ.

MAIN RESEARCH AREAS OF SAMARA STATE AEROSPACE UNIVERSITY

© 2002 Ye. V. Shakhmatov

Samara State Aerospace University

In the article several research areas carried out in Samara State Aerospace University and scientific schools acknowledged academically are represented.