УДК 539.384

ИЗГИБ ПРЯМОУГОЛЬНОЙ КОНСОЛЬНОЙ ПЛАСТИНЫ С УЧЁТОМ ДЕФОРМАЦИИ ПОПЕРЕЧНОГО СДВИГА

© 2008 М. В. Сухотерин

Санкт-Петербургский государственный университет водных коммуникаций

Предложен итерационный метод суперпозиции исправляющих функций для начального приближения в виде гиперболо-тригонометрических рядов по двум координатам, которые по мере наложения взаимно компенсируют порождаемые ими невязки в граничных условиях. Невязки убывают с ростом числа итераций, и решение можно получить с любой степенью точности. Приведены численные результаты расчетов прогибов и изгибающих моментов консольной пластины Рейсснера под действием равномерной нагрузки. Дается сравнение с классической теорией.

Прямоугольная консольная пластина Рейсснера, изгиб, итерационный метод, ряды Фурье, точное решение

Уточнённая теория пластин Э. Рейсснера [1], в отличие от классической (теории Кирхгоффа) [2], учитывает влияние деформации поперечного сдвига на изгиб. Это влияние может заметно сказываться на напряженном состоянии вблизи контура пластины и точек приложения сосредоточенных сил, а также на величине прогиба.

Проблема изгиба прямоугольной консольной пластинки Рейсснера является наименее изученной вследствие сложности краевой задачи. Какие-либо результаты её решения неизвестны.

Цель работы – построение итерационного процесса, реализация которого на ЭВМ позволяет получить решение задачи с любой точностью, а также сравнение численных результатов уточнённой теории и классической.

За основу принят метод суперпозиции, высказанный в [2] и реализованный на конкретных задачах в работах [3,4,5]. В данной задаче поочередно накладываются две функции прогибов и напряжений, которые в ходе итерационного процесса взаимно компенсируют порождаемые ими невязки в исходных граничных условиях. При этом все невязки уменьшаются, и решение приближается к точному решению задачи.

Рассмотрим прямоугольную консольную пластинку $-\gamma/2 \le x \le \gamma/2, \ 0 \le y \le 1$ (край y = 0 защемлён, остальные - свободные) постоянной толщины *h*, нагруженную по повер-

хности z = h/2 равномерно распределённой поперечной нагрузкой интенсивности q.

Задача изгиба такой пластинки, согласно Э. Рейсснеру [2], описывается двумя фундаментальными уравнениями

$$\nabla^2 \nabla^2 w = -1, \, \mathbf{y} - \mathbf{a} \,\nabla^2 \mathbf{y} = 0 \tag{1}$$

и граничными условиями

$$w = 0, j_{y} = 0, j_{y} = 0$$
 на грани $y = 0;$ (2)

$$M_{y} = 0, Q_{y} = 0, H_{y} = 0$$
 на грани $y = 1;$ (3)

$$M_x = 0, Q_x = 0, H_{xy} = 0$$
 на гранях $x = \pm \gamma/2.(4)$

Здесь координаты точек пластины отнесены к размеру *b* пластины; прогиб w(x,y)отнесён к величине qb^4/D ; функция напряжений y(x,y) – к величине qb^2 ; D – цилиндрическая жесткость; $\gamma = a/b$; a – размер пластины по оси x; $a = h^2/10$; ∇^2 – двумерный оператор Лапласа; углы поворота элементов j_x, j_y , моменты M_x, M_y, H_{xy} и перерезывающие силы Q_x , Q_y определяются формулами

$$\mathbf{j}_{x} = (w + \mathbf{a}_{1} \nabla^{2} w)'_{x} - \mathbf{a}_{1} \mathbf{y}'_{y} ,$$

 $\mathbf{j}_{y} = (w + \mathbf{a}_{1} \nabla^{2} w)'_{y} + \mathbf{a}_{1} \mathbf{y}'_{x} ,$

$$M_{x} = -(w_{xx}'' + n w_{yy}'' + a_{2} (\nabla^{2} w)_{xx}'') + a_{2} y_{xy}'' + a_{3},$$

$$M_{y} = -(w_{yy}'' + n w_{xx}'' + a_{2} (\nabla^{2} w)_{yy}'') - a_{2} y_{xy}'' + a_{3},$$

$$Q_x = -(\nabla^2 w)'_x + y'_y, \ Q_y = -(\nabla^2 w)'_y - y'_x,$$

$$H_{xy} = (1-n)w_{xy}'' + a_2(\nabla^2 w)_{xy}'' - a(y_{yy}'' - y_{xx}''),$$
(5)

где n – коэффициент Пуассона, $\alpha_1 = \frac{2}{1-\nu} \alpha$,

$$a_2 = 2a$$
, $a_3 = \frac{n}{1-n}a$.

Прогиб пластины *w* и функцию напряжений *y* разыскиваем в следующем виде:

$$w(x, y) = w_0(x, y) + \sum_{n=1}^{\infty} [w_{1n}(x, y) + w_{2n}(x, y)].$$
(6)

$$\mathbf{y}(x, y) = \sum_{n=1}^{\infty} [\mathbf{y}_{1n}(x, y) + \mathbf{y}_{2n}(x, y)], \qquad (7)$$

где

$$w_0(x, y) = -\frac{1}{24} [y^4 - 4y^3 + 6(1 - 2a_4)y^2 + 24a_1y]$$
(8)

есть частное решение первого уравнения (1);

$$w_{1n} = \sum_{k=1,3,\dots}^{\infty} (A_{kn} ch l_k x + B_{kn} x sh l_k x) \frac{\sin l_k y}{ch l_k^*}, \quad (9)$$

$$w_{2n} = -P_n y + \sum_{s=1}^{\infty} \frac{(-1)^s}{chm_s} [C_{sn} shm_s (y-1) + D_{sn} chm_s (y-1) + (y-1)(E_{sn} chm_s (y-1) + F_{sn} shm_s (y-1))] \cos m_s x, \qquad (10)$$

$$y_{1n} = \sum_{k=1,3,...}^{\infty} G_{kn} \frac{shb_k x}{shb_k^*} \cos l_k y, \qquad (11)$$

$$y_{2n} = \sum_{s=1}^{\infty} \frac{(-1)^s}{shx_s} [R_{sn}shx_s(y-1) +$$

$$+L_{sn}ch\mathbf{x}_{s}(y-1)]\sin \mathbf{m}_{s}x.$$
(12)

Здесь

$$A_{kn}$$
, B_{kn} , P_n , C_{sn} , D_{sn} , E_{sn} , F_{sn} , G_{kn} , R_{sn} , L_{sn}
– неопределённые коэффициенты; $I_k = \frac{kp}{2}$,

$$m_{s} = \frac{2ps}{g}, \ b_{k} = \sqrt{1/a + l_{k}^{2}}, \ x_{s} = \sqrt{1/a + m_{s}^{2}},$$
$$a_{4} = a_{2} + a_{3}, \ l_{k}^{*} = l_{k}g/2, \ b_{k}^{*} = b_{k}g/2.$$

Функции w_{1n} , w_{1n} являются бигармоническими; функции y_{1n} , y_{2n} удовлетворяют второму уравнению (1). Функции w_{1n} , y_{1n} «автоматически» удовлетворяют первым двум граничным условиям (2) и последним двум условиям (3); функции w_{2n} , y_{2n} – последним двум условиям (4).

Начальный компонент w_0 (8) удовлетворяет всем граничным условиям, кроме первого условия (4). Невязка по изгибающему моменту от w_0 после разложения в ряд Фурье по синусам

$$M_{x_0}|_{x=\frac{g}{2}} = n[\frac{(y-1)^2}{2} - a] = \sum_{k=1,3,\dots}^{\infty} b_{k_0} \sin I_k y, \quad (13)$$

где

$$b_{k_0} = \frac{n}{l_k} (1 - \frac{2}{l_k^2} - a_2), \qquad (14)$$

используется для определения коэффициентов рядов (9), (11) при удовлетворении граничным условия (4). Коэффициенты этих рядов примут вид:

$$B_{k1} = \frac{b_{k_0} / I_k}{3 + n - (1 - n) \frac{2I_k^*}{sh2I_k^*} + 4aI_k (I_k - b_k \frac{thI_k^*}{thb_k^*})},$$

$$A_{k1} = \frac{1}{I_k} \left(\frac{1+n}{1-n} - I_k^* cth I_k^* \right) B_{k1} , \qquad (15)$$

$$G_{k1} = -2I_k th I_k^* B_{k1}.$$

Невязки выполнения граничных условий на кромках y = const от компонентов w_{11}

и y_{11} после разложения в ряд Фурье по косинусам (и перестановки знаков суммирования)

$$j_{y}|_{y=0} = \sum_{k=1,3,\dots}^{\infty} [A_{k1}I_{k}\frac{chI_{k}x}{chI_{k}^{*}} + \frac{B_{k1}}{chI_{k}^{*}}(I_{k}xshI_{k}x + 2a_{1}I_{k}^{2}chI_{k}x) + G_{k1}a_{1}b_{k}\frac{chb_{k}x}{shb_{k}^{*}}] =$$
$$= P_{1} + \sum_{s=1}^{\infty} (-1)^{s}a_{s1}\cos m_{s}x ,$$

$$M_{y}|_{y=1} = -\sum_{k=1,3,\dots}^{\infty} (-1)^{\tilde{k}} I_{k} \{(1-n)A_{k1}I_{k} \frac{chI_{k}x}{chI_{k}^{*}} + \frac{B_{k1}}{chI_{k}^{*}} [(1-n)I_{k}xshI_{k}x + 2(a_{2}I_{k}^{2} - n)chI_{k}x] + G_{k1}a_{2}b_{k}\frac{chb_{k}x}{shb_{k}^{*}} \} = \sum_{s=1}^{\infty} (-1)^{s}t_{s1}\cos m_{s}x ,$$

где

$$P_{1} = \frac{4n / g}{(1-n)} \sum_{k=1,3,\dots}^{\infty} \frac{B_{k1} t h l_{k}^{*}}{l_{k}}, \ \tilde{k} = \frac{k+1}{2},$$

$$a_{s1} = \frac{8/g}{(1-n)} \sum_{k=1,3,\dots}^{\infty} \left(\frac{m_s^2 + nl_k^2}{l_k^2 + m_s^2} - \frac{2m_s^2}{b_k^2 + m_s^2}\right) \frac{l_k B_{k1} t h l_k^*}{l_k^2 + m_s^2},$$

$$t_{s1} = \frac{8m_s^2}{g} \sum_{k=1,3,\dots}^{\infty} (-1)^{\tilde{k}} (\frac{2}{b_k^2 + m_s^2} - \frac{1-n}{l_k^2 + m_s^2}) \frac{l_k^2 B_{k1} th l_k^*}{l_k^2 + m_s^2},$$

используются для определения коэффициентов C_{s1} , D_{s1} , E_{s1} , F_{s1} , R_{s1} , L_{s1} функций w_{21} (10) и y_{21} (12) при удовлетворении граничным условиям (2), (3).

Эти коэффициенты имеют вид:

$$C_{s1} = \frac{1+n}{m_s d_s} \{ [1 + (\frac{1}{2m_s} + \frac{2am_s^2}{1-n}e_s)sh2m_s]t_{s1} + \frac{2am_s^2}{1-n}e_s \} + \frac{2m_s^2}{1-n}e_s + \frac{2m_s^2}{1-n}$$

$$+[h_s shm_s + 4am_s^2 t_s chm_s]a_{s1}\}chm_s,$$

$$D_{s1} = \frac{1+n}{m_s d_s} \left(\left\{ \frac{sh^2 m_s}{m_s} + \frac{1-n}{1+n} m_s + \frac{4am_s^2}{1-n} \left[e_s sh^2 m_s + \frac{1-n}{1+n} \right] \right) \right)$$

$$+\frac{1-n}{1+n}(\frac{shm_{s}}{shx_{s}}-\frac{m_{s}}{x_{s}})]t_{s1}+\{-2s_{s}+4am_{s}^{2}\times\\\times[t_{s}(1+\frac{1-n}{1+n}\frac{2m_{s}}{sh2m_{s}})+\frac{1-n}{1+n}q_{s}]t_{s}hm_{s}\cdot a_{s1})chm_{s},$$

$$E_{s1} = \frac{1-n}{1+n} m_s C_{s1}, \quad F_{s1} = s_s C_{s1} - D_{s1} cth m_s,$$

$$R_{s1} = \frac{1}{2ax_s} \{ \frac{chm_s}{m_s} t_{s1} - (h_s - 4am_s^2 cthm_s) D_{s1} - 2(1 + 2am_s^2) s_s C_{s1} \} \frac{shx_s}{chm_s},$$

$$L_{s1} = -2\frac{1-n}{1+n} m_s^2 \frac{shx_s}{chm_s} C_{s1},$$

где

$$d_{s} = (3+n)(1-n)sh^{2}m_{s} + (1-n)^{2}m_{s}^{2} + 4 - -16am_{s}^{2}[\{(\frac{3+n}{4}\frac{m_{s}}{x_{s}} + \frac{1-n}{4}\frac{x_{s}}{m_{s}}) \times \\ \times thx_{s}cthm_{s} - 1 + am_{s}^{2}(g_{s}cthm_{s} - 2)\}sh^{2}m_{s} + + (1+2am_{s}^{2})t_{s} + \frac{1-n}{4}m_{s}(g_{s} - 2\frac{shm_{s}}{chx_{s}})],$$

$$\boldsymbol{e}_{s} = \left(\frac{1}{\boldsymbol{m}_{s}} - \frac{1}{\boldsymbol{x}_{s}} th\boldsymbol{x}_{s} cth\boldsymbol{m}_{s}\right), \boldsymbol{h}_{s} = (1-n)\boldsymbol{m}_{s} - 2cth\boldsymbol{m}_{s},$$

$$t_s = \frac{chm_s}{chx_s} - 1$$
, $q_s = x_s thx_s - m_s thm_s$,

$$\boldsymbol{S}_{s} = 1 + \frac{1-n}{1+n} \boldsymbol{m}_{s} cth \boldsymbol{m}_{s} , \ \boldsymbol{g}_{s} = (\frac{\boldsymbol{m}_{s}}{\boldsymbol{X}_{s}} + \frac{\boldsymbol{X}_{s}}{\boldsymbol{m}_{s}})th\boldsymbol{X}_{s}.$$

После функций w_{21} и y_{21} , так же, как и после w_0 , остается невязка по изгибающему моменту на кромках x = const:

$$M_{x}|_{x=\frac{g}{2}} = \sum_{s=1}^{\infty} m_{s} \{ [(1-n)m_{s}C_{s1} + p_{s}E_{s1}] \frac{shm_{s}(y-1)}{chm_{s}} + \frac{shm_{s}(y-1)}{chm_{s}} +$$

$$+\frac{1}{chm_{s}}([(1-n)m_{s}D_{s1}+p_{s}F_{s1}]chm_{s}(y-1)+(1-n)\times$$

$$\times m_{s}(y-1)[E_{s1}chm_{s}(y-1)+F_{s1}shm_{s}(y-1)])+$$

$$+\frac{a_{2}X_{s}}{shx_{s}}[R_{s1}chx_{s}(y-1)+L_{s1}shx_{s}(y-1)]\},$$

где $p_s = 2(am_s^2 - n)$, которая после разложения в ряд Фурье по синусам

$$M_{x}|_{x=\frac{g}{2}} = \sum_{k=1,3,\dots}^{\infty} b_{k1} \sin l_{k} y,$$

где

$$b_{k1} = 4I_k \sum_{s=1}^{\infty} \frac{1}{d_s (I_k^2 + m_s^2)} ((-1)^{\tilde{k}} I_k m_s^2 (\frac{2(1-n)}{I_k^2 + x_s^2} - \frac{(1-n)^2}{I_k^2 + m_s^2}) [(1 + \frac{sh2m_s}{2m_s} + \frac{2am_s^2}{1-n}e_s sh2m_s)t_{s1} + (h_s shm_s + 4am_s^2 t_s chm_s)a_{s1}] +$$

+
$$(\frac{2m_s^2}{l_k^2 + x_s^2} - \frac{m_s^2 + nl_k^2}{l_k^2 + m_s^2})\{-(h_s shm_s +$$

 $+4am_{s}^{2}t_{s}chm_{s})t_{s1} + [(3+n)(1-n)m_{s}shm_{s}chm_{s} + (1-n)^{2}m_{s}^{2} - 4am_{s}^{2}(1-n)q_{s}ch^{2}m_{s}]a_{s1}\}),$

вновь используются для отыскания коэффициентов A_{k2} , B_{k2} , G_{k2} рядов w_{12} , y_{12} .

И далее описанный выше процесс повторяется.

Анализ показывает, что коэффициенты A_{kn}, B_{kn} ряда (9) имеют порядок $0(1/k^2)$ при n=1 и $0(\ln k/k^2)$ при n>1; коэффициенты G_{kn} ряда (11) – 0(1/k) и $0(\ln k/k)$ соответственно. Ряд (9)

сходится не хуже, чем ряд $\sum_{k=1}^{\infty} \frac{\ln k}{k^3}$. Ряд (11) для функции напряжений сходится равномерно всюду, исключая концы заделанного сечения (где он расходится); то же самое относится к функциональному ряду $M_y |_{y=0}$, представляющему выражение изгибающего момента M_y в заделанном сечении пластины. Это означает, что на концах заделанного сечения имеют место «пики» напряжений, которые обусловлены резкой сменой граничных условий в этих точках.

Так как в ходе итерационного процесса невязки выполнения граничных условий должны убывать по абсолютной величине, то условие сходимости метода можно записать так: $\lim_{n\to\infty} (b_{kn}, a_{sn}, t_{sn}) = 0$. В силу линейной связи этих величин между собой и с коэффициентами $A_{kn}, B_{kn}, G_{kn}, \dots$ это условие равносильно, например, условию: $\lim_{n\to\infty} B_{kn} = 0$.

В свою очередь, коэффициенты B_{kn} линейно зависят от совокупности коэффициентов B_{kn-1} предыдущей итерации, т.е. имеет место однородная бесконечная система линейных алгебраических уравнений вида

$$B_{kn} = \sum_{i=1,3,\dots}^{\infty} c_{ki} B_{in-1}$$
 (k=1, 3, ...), где c_{ki} – коэф-

фициенты системы.

Исследования показывают, что эта сис-

тема является регулярной, т.е.
$$\sum_{i=1,3,\dots}^{\infty} |c_{ki}| < 1$$
, а

это означает, что данный итерационный процесс сходится к точному решению задачи.

В качестве примеров получены численные результаты на ЭВМ для пластин с различным отношением сторон $\gamma = 1/4$, 1/2, 1, 2,

4 и различной толщины h = 0,02; 0,05; 0,1; 0,15; 0,2; 0,3; 0,4 при коэффициенте Пуассона v = 0,3. В рядах удерживалось до 150 членов. Процесс сходился по геометрической прогрессии со знаменателем <1/2. Счёт прекращался после 10 итераций. Вычислялись коэффициенты рядов (9-12), а также изгибающие моменты M_y в заделанном сечении и прогибы противоположной грани.

На рис. 1 приведены линии относительных прогибов *w* грани *y* =1, а на рис. 2 – эпюры изгибающих моментов M_y (отнесенных к величине qb^2) в заделке квадратной пластины (γ =1). Кривая I соответствует классической теории тонких пластин Кирхгоффа [4]. Номера кривых 2-6 соответствуют относи-

тельным толщинам h = 0,02; 0,1; 0,2; 0,3; 0,4 пластин Рейсснера.

Рис. 2. Изгибающие моменты М_у в заделанном сечении

Расчёты показывают, что при малых от-

носительных толщинах $h \le 1/20$ результаты для пластин Кирхгоффа и Рейсснера практически совпадают. Различия принципиального характера проявляются лишь в изгибающих моментах М заделанного сечения вблизи края заделки. Если для пластин Кирхгоффа $M_{y} \rightarrow -\infty$ при $x \rightarrow \pm \gamma/2$, то для пластин Рейсснера с ростом относительной толщины вблизи края заделки образуется минимум, который смещается к середине заделки и возрастает, после чего $M_{y} \rightarrow +\infty$. Таким образом, деформации поперечного сдвига, учитываемые в теории Рейсснера, резко меняют изгибающие моменты (а, следовательно, и напряжения) вблизи края заделанного сечения с - ∞ на + ∞ . В середине заделки M_{μ} с ростом

h сначала несколько возрастают, а затем убывают.

Относительные прогибы увеличиваются с ростом относительной толщины (абсолютные прогибы, разумеется, уменьшаются,

т.к. $w = \frac{WD}{qb^4}$, где *w* - относительный прогиб,

W - абсолютный прогиб срединной поверхности пластины).

Указанные выше особенности уточненной теории проявляются и для пластин с другим отношением сторон ($\gamma = 1/4$, 1/2, 1, 2, 4). Отметим для сравнения, что начальное приближение $w_0(8)$, соответствующее цилиндрическому изгибу пластины, даёт для прогибов грани y = 1 следующие значения: -0,12507; -0,12664; -0,13157; -0,13981; -0,15129 соответственно для относительных толщин 0,02; 0,1; 0,2; 0,3; 0,4. Значения изгибающих моментов M_{y0} в заделке не зависят от толщины пластины и равны 0,5 (как и для консольной балки).

Библиографический список

1. Reissner E. The effect of transverse shear deformation on the bending of elastic plates. – J. Appl-Mech., 1945, 12, p. A69-A77.

2. Тимошенко, С.П. Пластинки и оболочки. / С. П. Тимошенко, С. Войновский-Кригер. – М.: Наука, 1966. – 636 с.

3. Васильев, В. З. Применение метода наложения неполных решений в случае первой основной задачи для полубесконечного цилиндра. – Тр. Ленингр. инж.- строит. инта. - 1973, № 73. - Механика стержневых систем и сплошных сред. - С. 15–22.

4. Сухотерин, М. В. Итерационный метод решения задачи об изгибе прямоугольной консольной пластины // Прикл. механика. – Киев, 1982, т. 18, № 5. - С. 121–125.

5. Сухотерин, М. В. К исследованию изгиба защемленной по контуру прямоугольной пластины Рейсснера. // Прикл. механика. – Киев, 1990, т. 26, № 7. - С. 120–124.

References

Reissner E. The effect of transverse shear deformation on the bending of elastic plates. – J. Appl-Mech., 1945, 12, p. A69-A77.

Timoshenko, S. P. Plates and shells. – Voinovsky-Kriger S. – Moscow: Nauka (Science), 1966. – 636 pp.

Vassilyev, V. Z. Application of incomplete solution superposition method in case of the first main task for a semi-infinite cylinder. – Transactions of Leningrad civil engineering institute. - 1973, No. 73. – Mechanics of bar systems and continuous media, pp. 15–22.

Sukhoterin, M. V. Iteration method of solving a problem on rectangular cantilever plate bending / Applied mechanics. – Kiev, 1982, vol. 18, No. 5, pp. 121–125.

Sukhoterin, M. V. Analysis of contour restrained Reissner rectangular plate. / Applied mechanics. – Kiev, 1990, vol. 26, No. 7, pp. 120–124.

RECTANGULAR CANTILEVER PLATE BENDING WITH REGARD TO TRANSVERSE SHEAR DEFORMATION

© 2008 M. V. Sukhoterin

Saint Petersburg State University of Water Communications

The paper proposes an iteration method of correction function superposition for initial estimate in the form of hyperbolic-trigonometric series by two coordinates, which as they are superimposed, mutually compensate the misclosures they generate in boundary conditions. The misclosures decrease as the number of iterations grows and a solution can be obtained with any degree of accuracy. Numerical results of calculating deflections and bending moments of a Reissner cantilever plate under uniform loading are presented. Comparison with the classical theory is given.

Reissner rectangular cantilever plate, bending, iteration method, Fourier series, exact solution

Информация об авторе

Сухотерин Михаил Васильевич, кандидат физико-математических наук, доцент кафедры математики Санкт-Петербургского государственного университета водных коммуникаций. Область научных интересов: теория пластин.

Sukhoterin, Mikhail Vassilyevitch. Associate professor of mathematics department, Saint Petersburg State University of Water Communications. Candidate of Physical and Mathematical Science. Area of research: plate theory.