УДК 539.376:620.172.251.2 ОБ ИСПОЛЬЗОВАНИИ МЕТОДА БАЗОВЫХ ДИАГРАММ ДЛЯ УТОЧНЕНИЯ ПРОГНОЗИРОВАНИЯ ДЛИТЕЛЬНОЙ ПРОЧНОСТИ ЖАРОПРОЧНЫХ СПЛАВОВ НА НИКЕЛЕВОЙ ОСНОВЕ

© 2006 Д.С. Авраменко

Институт проблем прочности им. Г.С. Писаренко НАНУ, г. Киев

Представлены результаты обработки данных о длительной прочности жаропрочных никелевых сплавов методом базовых диаграмм. Данные получены при малых длительностях нагружения. Показаны возможности уточнения прогнозирования в таких случаях на основе обработки данных при больших длительностях нагружения.

Жаропрочные сплавы на основе никеля широко применяются в авиационной технике в упрочненном состоянии при довольно высоких гомологических температурах. Это приводит к столь существенной интенсификации временных процессов разупрочнения и сложным структурным изменениям, что вопросы уточнения прогнозирования длительной прочности, оптимизации известных структурных состояний, разработки новых более жаропрочных сплавов должны решаться взаимосвязано и на довольно общей основе. При этом следует подчеркнуть, что при довольно ограниченном числе таких материалов в отдельных странах все они довольно существенно различаются между собой. Это затрудняет уточнение роли отдельных факторов. В связи с этим, как предполагается, важным является совместный как обобщенный анализ известных экспериментальных данных, так и взаимообусловленный более конкретный анализ особенностей длительного разупрочнения в отдельных случаях, что обеспечивается в какой-то мере применением метода базовых диаграмм (МБД) [1, 2].

Основу МБД составляет уравнение базовых диаграмм

$$\lg \sigma'_{t} = \lg \sigma_{1} - \frac{3.6 - \lg \sigma_{1}}{12} (\lg t + \lg^{2} t), \quad (1)$$

где σ'_t – текущие напряжения по базовой диаграмме; σ_1 – 1-часовая длительная прочность, t – долговечность.

Экспериментальные диаграммы длительной прочности (ДДП) рассматриваются в виде независимых отдельных участков. Левая граница отдельного участка экспериментальной диаграммы по напряжению и времени обозначается $\sigma_{\alpha t}$, αt , правая – σ_{t} , tэ при отношении tэ/ $\alpha t \approx 10$.

Особенность каждого отдельного участка экспериментальной диаграммы характеризуется величиной

$$\beta_{\vartheta} = \frac{\sigma_{\alpha t} - \sigma_{t\vartheta}}{\sigma_{\alpha t} - \sigma'_{t}}, \qquad (2)$$

где β_9 – характеристика отклонения участка экспериментальной диаграммы от соответствующего участка базовой. Для определения β_9 по формуле (2) сначала в (1) вместо σ'_t и t подставляются значения $\sigma_{\alpha t}$ и αt , что приводит к уравнению с одним неизвестным σ_1 . Устанавливаемая величина σ_1 определяет ту базовую диаграмму, которая пройдет через точку с координатами $\sigma_{\alpha t}$ и tэ. Подстановка в (1) установленного значения σ_1 позволяет рассчитать σ'_t для t = tэ и определить по формуле (2) величину β_9 .

Формула (2) после замены $\sigma_{t_3} = \sigma_t$, $\beta_3 = \beta$ используется в виде

$$\sigma_t = \sigma_{\alpha t} - \beta (\sigma_{\alpha t} - \sigma'_t) \tag{3}$$

для прогнозирования искомого значения σ_t по исходному значению $\sigma_{\alpha t}$ при обобщенном показателе β отклонений отдельных участков экспериментальных диаграмм от соответствующих участков базовых.

Информация об отдельных участках экспериментальных ДДП (таблицы 1-3) представляется точками с координатами (β_{3} , $\sigma_{\alpha t}$) в системе координат $\beta_{3} - \sigma_{\alpha t}$.

Марка		732 °C			815 °C			871 °C			982 °C	
материала	σ_{10}^2	ß	σ_{10}^{3}	σ_{10}^2	ß	σ_{10}^{3}	σ_{10}^2	ß	σ_{10}^{3}	σ_{10}^2	β	σ_{10}^{3}
M-252	430	1.35	310	240	1.89	125	140	1.53	77	- 10	۲ -	- 10
M-600	380	1.33	270	190	1.36	120	-	-	-	-	-	-
Хастелой R-235	410	0.93	330	270	1.06	200	180	1.21	120	47	0.86	32
Хастелой В	240	0.99	180	130	1.03	90	-	-	-	-	-	-
Хастелой С	220	0.87	170	130	0.77	100	92	0.77	69	-	-	-
Хастелой Х	-	-	-	100	1.1	65	-	-	-	36	1.08	21
Хастелой Х	180	1.01	130	110	0.96	77	77	1.08	49	36	1.08	21
Инконель	70	0.92	48	40	0.92	26	29	0.86	19	17	0.81	11
Инконель М	200	1.31	130	120	1.17	77	-	-	-	-	-	-
Инконель W	310	1.38	210	130	1.36	77	52	1.48	24	22	-	-
Иконель Х	350	0.89	280	200	1.38	126	125	1.64	63	23	0.73	16
Инконель 550	-	-	-	240	1.48	150	126	1.52	68	23	-	-
Инконель 700	500	0.93	410	300	0.42	270	190	1.36	120	42	-	-
Инконель 702	220	1.4	140	87	1.33	49	45	0.83	31	21	0.68	15
Уаспалой	500	1.34	370	280	1.63	170	160	0.88	120	45	-	-
Улимет 500	510	0.41	470	310	1.24	220	210	1.26	140	_	-	-
Удимет 600	-	-	-	370	1.36	260	240	1.31	160	-	-	-
Улимет 700	-	-	-	410	1.27	300	290	1.36	196	112	-	-
Рене 41	570	1.15	450	310	1.52	200	190	1.36	120	70	-	-
Никротунг	-	-	-	480	1.79	310	340	1.56	220	150	1.36	91
Юнитемп АF-1753	530	1.0	430	330	1.19	240	220	1.4	140	70	1.04	45
In-100 [PDRL]	_	-	-	520	1.11	410	-	_	-	175	1.3	112
MAR-M-200	640	0.18	620	520	1.01	420	430	1.46	300	200	1.31	130
M-211	650	0.98	540	520	1.21	400	370	1.23	270	170	1.26	110
M-246	700	0.69	620	530	0.7	460	430	1.46	300	190	1.16	130
F-342	-	-	-	310	1.52	200	210	1.44	130	-	-	-
J-1360	490	1.25	370	280	1.33	190	180	1.31	115	66	1.44	33
GMR-235	440	1.22	330	300	1.41	200	180	1.09	126	77	-	-
Инко 713	600	1.02	490	380	1.09	290	270	1.21	190	110	1.37	63
Нимоник 80	230	1.35	150	170	-	-	-	-	-	-	-	-
Нимоник 80А	280	1.48	180	160	1.54	90	-	-	-	-	-	-
Нимоник 90	340	1.3	240	200	1.5	120	110	1.46	60	-	-	-
Нимоник 95	370	1.48	250	220	1.4	140	150	1.61	80	79	-	-
Нимоник 100	400	1.06	310	280	1.18	200	200	1.5	120	70	2.08	20
Нимоник 105	490	1.25	370	320	1.35	220	200	1.31	130	60	1.41	30
Нимоник 115	540	1.28	410	360	1.38	250	-	-	-	-	-	-
G-39	-	-	-	110	0.88	80	-	-	-	50	1.09	30
G-67	-	-	-	460	1.62	310	300	1.13	220	130	1.03	90
G-77	260	0.47	230	200	0.93	150	140	0.49	120	-	-	-
G-80	410	1.39	290	110	-	-	-	_	-	-	-	-
G-81	500	1.24	380	270	1.67	160	150	-	-	-	-	-
G-94	400	0.59	350	330	0.66	280	270	0.91	210	130	1.08	88
G-100	-	-	-	-	-	-	400	1.18	300	200	1.5	120
G-64	-	-	-	410	1.27	300	300	1.41	200	130	0.77	100
Нимокаст 90	210	0.72	170	-	-	-	130	1.03	90	-	-	-

Таблица 1. – Длительная прочность сплавов [3] на никелевой основе при различных температурах

N⁰	$\sigma_{\alpha t}$,	σ _t ,	αt,	t,	lg t	Δ,	β _э
п/п	МПа	МΠа	Ч	Ч		%	•
1	2	3	4	5	6	7	8
1	660	520	100	1000	1.0	-1.23	1.243
2	600	440	100	1000	1.0	4.66	1.491
3	360	280	100	1000	1.0	-8.43	1.004
4	350	300	100	1000	1.0	-17.26	0.639
5	300	220	100	1000	1.0	-5.48	1.130
6	310	210	100	1000	1.0	2.82	1.382
7	160	100	100	1000	1.0	0.83	1.318
8	380	240	100	1000	1.0	13.67	1.698
9	520	380	100	1000	1.0	2.87	1.410
10	560	470	100	1000	1.0	-9.46	0.870
11	700	610	100	1000	1.0	-9.94	0.777
12	380	290	100	1000	1.0	-5.93	1.091
13	770	600	100	1000	1.0	2.11	1.404
14	770	710	100	1000	1.0	-13.71	0.496
15	800	690	100	1000	1.0	-7.25	0.894
150	60	30	100	1000	1.0	7.97	1.413
151	50	30	100	1000	1.0	-12.66	1.093
152	130	90	100	1000	1.0	-11.85	1.026
153	130	88	100	1000	1.0	-9.84	1.078
154	200	120	100	1000	1.0	8.68	1.495
155	130	100	100	1000	1.0	-20.66	0.770

Таблица 2 – Прогнозирование длительной прочности сплавов [3] на основе никеля

$$\beta = 1.4; S_{n = 155} = 14.1 \%; S_{n = 150} = 10.9 \%$$

Это дает возможность выполнять простой и эффективный сравнительный анализ больших массивов данных. Важными элементами такого анализа являются оценки и учет для различных групп материалов характеристик β , β_{3} , а также Δ и *S*, определяемых по формулам

$$\Delta = \frac{\sigma_t - \sigma_{t_2}}{\sigma_{t_2}}, \qquad (4)$$

$$S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} \Delta_i^2} \ .$$
 (5)

В результате анализа более 2000 ДДП было установлено, что для сплавов с твердорастворным упрочнением наиболее вероятными являются значения $\beta = 1...1,3$. Для дисперсноупрочненных (к которым относятся рассматриваемые сплавы) – $\beta = 1,4...1,7$. В целом значения β_3 изменяются в пределах от 0 до 2,3.

Для иллюстрации различных возможностей уточнения особенностей длительного разупрочнения рассматриваемых сплавов на основе никеля проанализируем данные для трех групп таких сплавов, приведенные в [3-8].

В таблице 1 приведены данные о длительной прочности большой группы жаропрочных сталей и сплавов США и Англии. Ставится задача выяснения, есть ли среди этих данных особые случаи длительного разупрочнения, требующие по разным причинам более детального и углубленного анализа. Именно применение МБД позволяет такие случаи конкретизировать следующим образом.

В таблицах 1 и 2 приведены границы отдельных участков отдельных ДДП. Одна из наиболее существенных особенностей МБД заключается в том, что он позволяет при одном общем значении β выполнить прогнозирование координат правой границы всех участков по данным о координатах левой границы с последующей оценкой среднеквадратической погрешности S. На основе минимального значения S определяется окончательное расчетное значение β . Выполняется для всех участков прогнозирование координат правой границы по данным о координатах левой при установленном значении β . Пример такой обработки приведен в таблице 2. После этого особые случаи определяются, например, по максимальным значениям погрешностей прогнозирования Δ и соответствующим значениям β_3 . Соответствующий пример представлен в таблице 3.

Таблица 3. Максимальные значения погрешностей для сплавов для данных [3]

eren din enhaber din dambik [5]									
N⁰	$\sigma_{\alpha t}$,	σ _{tэ} ,	αt,	tэ,	Δ,	ß			
п/п	МΠа	МΠа	Ч	Ч	%	p ₃			
60	240	125	100	1000	28.70	1.89			
138	17	11	100	1000	-32.55	0.81			
139	23	16	100	1000	-33.88	0.73			
140	21	15	100	1000	-36.60	0.68			
149	70	20	100	1000	93.70	2.08			

 $\beta = 1.4; \ S_{n = 155} = 14.1 \ \%; \ S_{n = 150} = 10.9 \ \%$

Для такой оценки особенностей отдельных участков ДДП в принципе могут быть использованы многие методы, однако информативность таких данных, устанавливаемых с помощью МБД, значительно выше по той причине, что общее отдельное значение β может использоваться для довольно больших массивов экспериментальных данных при сравнительно низком общем значении S. В таком случае становятся общесопоставимыми значения Δ и соответствующие разности значений $\beta - \beta_3$.

Согласно полным данным таблицы 2 в результате расчетов Δ для 155 участков различных диаграмм длительной прочности при длительности экспериментов до 10³ ч, температурах испытания 649, 732, 815, 871, 982° С и единственном расчетном значении $\beta = 1,4$ величина S оказалась равной 14,1 %. После исключения из рассмотрения всего 5 случаев, для которых были максимальными отклонения $\beta - \beta_3$ и, соответственно, максимальные погрешности прогнозирования, величина S понизилась до 10,9 %.

На рис. 1 приведены значения погрешностей прогнозирования в результате обработки рассмотренных данных, а на рис. 2 и 3 аналогично приведены значения погрешностей, установленные в результате обработки данных [4] и [5-8]. Согласно этим данным в целом оказываются сравнительно низкими погрешности прогнозирования при довольно высоких напряжениях и соответственно сравнительно низких температурах. Этот пример приводит к выводу, что использование разнообразных вариантов обработки и представления результатов расчета может способствовать более точным выявлениям, оценкам и конкретизации особенностей длительного разупрочнения различных материалов.

Рис. 1. Погрешности прогнозирования МБД длительной прочности сплавов [3] на основе никеля

Рис. 2. Погрешности прогнозирования МБД длительной прочности сплавов [4] на основе никеля

Рис. 3. Погрешности прогнозирования МБД длительной прочности сплавов [5-8] на основе никеля

Несколько отличной была обработка данных [3, 4] о 100 участках ДДП для рассматриваемых жаропрочных сплавов на основе никеля России, используемых в авиации. Рассмотренным способом устанавливалось значение β_3 для первого участка отдельной ДДП.

Рис. 4. Характеристики β₃ для сплавов [3] на основе никеля при соответствующих напряжениях (а) и относительной температуре (б)

*Puc. 5. Характеристики β*₃ для сплавов [4] на основе никеля при соответствующих напряжениях (а) и относительной температуре (б)

*Рис. 6. Характеристики β*₃ для сплавов [5-8] на основе никеля при соответствующих напряжениях (a) и относительной температуре (б)

При переходе к последующему эта величина увеличивалась на 0,2 с учетом того, что величина каждого участка составляла один порядок по логарифмической шкале времени. Эти расчеты привели к S = 14.8%. После исключения из рассмотрения 4 данных о четырех участках значение S понизилось до 9.8%.

Обработка данных [5-8] об испытаниях длительностью до 10^5 ч для 165 участков различных диаграмм длительной прочности привела к величине S, равной 14 %. После исключения из рассмотрения 6 случаев, для которых были максимальными отклонения β – β_3 и, соответственно, максимальные погрешности прогнозирования, величина S понизилась до 9.8 %.

Для всех трех рассматриваемых случаев обработки на рис. 4-6 представлены для каждого отдельного участка ДДП значения β_2 при соответствующих значениях $\sigma_{\alpha t}$ или t. Видно, что поля положений экспериментальных точек в этих трех случаях близкие. По ним легко устанавливаются обобщенные значения, например $\beta = 1,4$, которые в целом приводят к довольно удачным результатам прогнозирования. Вместе с тем вся эта система данных позволяет выявлять довольно большое число разнообразных уточнений, которые могут обеспечить значительное повышение эффективности участия материаловедов в развитии рассматриваемого прогнозирования длительной прочности.

Список литературы

1. Кривенюк В.В. Прогнозирование длительной прочности тугоплавких металлов и сплавов. — Киев: Наукова думка, 1990. — 248 с.

2. Писаренко Г.С., Кривенюк В.В. Новый подход к прогнозированию длительной прочности металлов // Докл. АН СССР. Механика. — 1990. — 312, № 3. — С. 558 — 562.

3. Химушин Ф.Ф. Жаропрочные стали и сплавы. -М.: Металлургия, 1969,- 646 с.

4. Либерман Л.Я., Пейсихис М.И. Свойства сталей и сплавов, применяемых в котлотурбостроении. -Л.: ЦКТИ, вып. 16, ч. 1, -219 с.: ч. 2, 1966.-244 с.: ч. 3, 1967. -180 с.

5. Data sheets on the elevated-temperature properties of nickel based 19Cr-18Co-4Mo-3Ti-3Al-B superalloy // NRIM creep data sheet. Tokyo. – 1993. –No. 34B. – 62 p.

6. Data sheets on the elevated-temperature properties of nickel based 15.5Cr-2.5Ti-0.7Al-INb-7Fe // Ibid. – 1992. – No 39A. – 26 p.

7. Data sheets on the elevated-temperature properties of nickel based 15Cr-28Co-4Mo-2.5Ti-3Al superalloy // Ibid. – 1989. – No. 24B. – 34 p.

8. Data sheets on the elevated-temperature properties of nickel based 13Cr-4.5Mo-0.75Ti-6Al-2.3(Nb+Ta)-Zr-B superalloy // Ibid. – 1990. – No. 29B. – 43 p.

ON THE USE OF THE METHOD OF BASE DIAGRAMS FOR SPECIFYING THE PREDICTION OF THE LONG-TERM STRENGTH OF HEAT-RESISTANT NICKEL-BASE ALLOYS

©2006 D.S. Avramenko

G.S. Pisarenko Institute for Problems of Strength, of the National Academy of Sciences of Ukraine, Kyiv

The results of processing the available data on the long-term strength of heat-resistant nickel-base alloys using the method of base diagrams are presented. These data were obtained for short durations of loading. The possibilities are shown for considerable refining of the long-term strength prediction in the similar cases on the basis of processing the data on the long-duration tests.