ОСОБЕННОСТИ КОНВЕРТИРОВАНИЯ ФОРСИРОВАННОЙ ПО СКОРОСТИ КАМЕРЫ СГОРАНИЯ ПРИ РАБОТЕ НА ПРИРОДНОМ ГАЗЕ

© 2002 А. Ф. Ивах, Г. П. Гребенюк, М. Н. Ишбулатов, В. И. Арефин, Н. И. Фокин

ФГУП «НПП «Мотор», г. Уфа

В работе приведены результаты экспериментальных исследований особенностей процесса горения в высокофорсированной по скорости камере сгорания при ее переводе на природный газ. Определены пути модернизации конструкции базовой камеры сгорания, обеспечивающие требуемый уровень характеристик и концентрации *NO*₂, без предварительного перемешивания топливовоздушной смеси.

Одной из главных задач конверсии авиационного двигателя в газотурбинный привод (ГТП) наземных энергоустановок является разработка конструкции камеры сгорания (КС), работающей на горючем природном газе и обеспечивающей наряду с выполнением требований по традиционным характеристикам жесткие нормативы по уровню эмиссии основных вредных выбросов – окиси азота $NO_x \le 50$ мг/нм³ и окиси углерода $CO \le 250$ мг/нм³ при условии достижения ресурса ГТП не менее 25 000 час.

Как показывает опыт, снижение концентрации *NO_x* до 50 мг/нм³ путем сжигания предварительно перемешенной "бедной"

($\alpha_{\phi y} = 1, 8...2, 2$) топливовоздушной смеси (TBC) невозможно без решения вопросов обеспечения устойчивости горения, требующих новых сложных систем автоматического управления, что наряду с появлением при сжигании "бедных" TBC пульсационного горения приводит к снижению эксплуатационной надежности КС и проблематичности достижения ресурсных показателей ГТП [1].

Возможен другой путь малоэмиссионного сжигания топлива, базирующийся, как и первый, на принципе локального уменьшения температуры пламени. Но, в отличие от первого, низкотемпературное пламя формируется при сжигании топлива по "богато-бедной" (R-Q-L) схеме. Суть такой схемы заключается в быстром разбавлении "богатой" ТВС ($\alpha_{\phi y}$ =0,5...0,7) большим количеством воздуха. Подача холодного воздуха приводит к понижению температуры пламени за счёт его смешения с горящей ТВС и её забеднению $(\alpha_{\phi y}$ увеличивается с 0,5...0,7 до 1,6...1,8),

и задача получения низкого уровня концентрации NO_x при "богато-бедной" схеме организации процесса горения состоит в обеспечении закона выгорания диффузионного факела по длине жаровой трубы с температурой пламени, не превышающей температуры окисления азота ($T_{\phi}^* \leq 1800$ К). Камеры сгорания с технологией "богато-бедного" горения имеют преимущество перед КС, реализующими сжигание предварительно перемешенной "бедной" ТВС – широкий диапазон устойчивой работы, отсутствие пульсационного горения при простой одноконтурной системе дозировки топлива.

Именно под такую схему проводилась модернизация КС серийного авиационного двигателя Р13-300, используемого в качестве газотурбинного привода энергетической установки ГТЭ-10/95 с номинальной мощностью N₂ = 8 МВт. Главной задачей модернизации камеры сгорания при ее переводе на природный газ являлось выполнение нормы ГОСТ 29328-92 по концентрации оксидов азота В продуктах сгорания $(C_{NO} \le 50 \, \text{мг/нм}^3)$ при сохранении максимальной преемственности с базовой конструкцией, обладающей высоким уровнем надежности и основных газодинамических характеристик (при работе на жидком топливе камера сгорания имеет при $\alpha_{\rm KC} = 3,5$, $v_{cp}^{\max} \leq 1,08$, $\eta_{\Gamma} = 0.98$, $\sigma_{KC} = 0.920$, $\Theta_{max} \leq 1,25$). Уровень оксидов азота серийной камеры сгорания составляет примерно 200 мг/нм³.

Практическая реализация достижения уровня *NO*_{*x*} ≤ 50 мг/нм³ при "богато-бедной" схеме организации процесса горения с обеспечением закона выгорания диффузионного факела, при котором исключается превышение температуры окисления азота, является сложной задачей. Опыт разработки промышленных ГТУ-2.5П и ГТУ-4П на базе авиационного двигателя Д-30 показал, что при невысоких параметрах термодинамического цикла ($\pi_{\kappa}^{*} = 7,0; T_{\kappa}^{*} = 543 \text{ K}; T_{2}^{*} = 1100 \text{ K}$) можно достигнуть уровня эмиссии NO, и CO менее 50 мг/нм³, реализуя схему "богато-бедного" горения [2]. Параметры камер сгорания ГТП-10/953 и ГТУ-4П (табл. 1) близки друг к другу и отличаются, в основном, по величине трактовых скоростей.

Первый же этап испытаний КС в серийной компоновке на природном газе выявил резкое отличие в процессах горения газообразного и жидкого топлив на $\lambda_{k} = 0,41$ – полнота сгорания топлива на $\alpha_{KC} = 3,5$ составила $\eta_{\Gamma} = 0,8...0,82$ (рис. 1); при уменьшении

скорости до $\lambda_{\kappa} = 0,28$ полнота сгорания возрастала с $\eta_{\Gamma} = 0,82$ до $\eta_{\Gamma} = 0,925$ (рис. 2).

Полученный результат отчетливо показывает сильное влияние скорости на входе и по тракту КС на процессы смешения и горения во фронтовом устройстве топлив, находящихся в разных фазовых состояниях. Можно предположить, что при работе КС на традиционном жидком топливе с $\lambda_{\kappa} = 0,41$ и с соответствующими этой скорости перепадами давления на жаровой трубе подача воздуха во фронтовое устройство через завихритель и приток приблизительно половины воздуха от 1-го ряда отверстий обеспечивают в узкой зоне фронта пламени состав смеси $\alpha_{\phi v} \approx 1,0$; при переходе на газообразное топливо при отсутствии у него фазового перехода горение смеси начинается сразу за завихрителем, куда воздух от 1-го ряда отверстий не доходит, в результате чего состав смеси во фронте пламени снижается до $\alpha_{dv} \approx 0,60$, что и влечет за собой падение полноты сгорания.

Таблица 1

	Параметр							
КС двигателя	<i>Т</i> [*] , К	$P_{\kappa}^{*},$	<i>Т</i> * ₂ . К	λ_{κ}	<i>W</i> _{фу} , м/с	<i>W_{кк}</i> , м/с	$W_{\mathcal{H}}^{\phi.y.},$	$W_{Mu\partial},$
	<i>K</i> 3	кгс/см2	23	₩ _к , м/с	$\alpha_{\phi y}$	(K) (K)	M/C	м/с
ГТП-	534	6.8	1100	0,41	8,10	93	6.4	38
10/953		- 3 -		162	0,50		- 3	
Серийная Д-30	543	7,4	1100	0,28	4,30	34	3,5	20
$\lambda_{\kappa}=0,41$					α _{кc} =3,5			
η_r								+
$0,95$ $\Sigma F_0 = 1150 \text{ cm}^2$							*	
* *							* *	+
0,9					$\Sigma F_0 = 1250 \text{ cm}^2$			
Δη _r =15%				,				
0.95	9				серийна	я к.с.		<u>A</u>
0,85	ø				$\Sigma F_0 = 143$	50 см ²		
0		<u> </u>						2
0,8 +					0,8			
3 4 $\alpha_{\kappa c}$ 5 6 0,25 0,3 0,35 0,4 λ_{κ} 0,45								

Рис. 1. Зависимость коэффициента полноты сгорания η_{Γ} от состава смеси

Рис. 2. Влияние λ_{κ} на коэффициент полноты сгорания топлива При изменении λ_{k} с 0,41 до 0,28 потери полного давления в камере сгорания снижаются ($\Delta P^{*} \approx 4\%$), увеличивается перепад давления на жаровой трубе и в большей степени на завихрителе, в результате состав смеси во фронте пламени приближается к 1,0 и полнота сгорания во фронтовом устройстве возрастает.

Таким образом, задача конверсии серийной форсированной по скорости КС при переводе на природный газ сводилась к исследованию влияния на η_{Γ} основных геометрических параметров КС при $\lambda_{\kappa} = 0,41$, обеспечивающих на этом режиме подобие по процессам смешения и горения, реализуемых на режиме $\lambda_{\kappa} = 0,28$, и позволяющих при максимально возможной преемственности с серийной конструкцией обеспечить доводку основных характеристик камеры сгорания на природном газе, в том числе и по вредным выбросам.

Для оценки возможности практической реализации R-Q-L схемы в рамках конструкции серийной КС выполнен анализ зависимостей, количественно связывающих эмиссию окислов азота с основными геометрическими и режимными параметрами КС [3]:

$$G_{NO} = \omega_e \cdot \varphi(D_m) \cdot V_{\mathcal{H}} \cdot P_s, \qquad (1),$$

где $\overline{P_s}$ - относительный объём стехиометрических областей в КС; V_{∞} – объём жаровой трубы; $\varphi(D_m)$ – универсальная функция числа Дамкелера; ω_e – эффективная скорость окисления азота.

Анализ составляющих выражения (1) показывает, что с учетом того, что ω_e зависит только от температуры факела, на процесс образования NO_x в основном влияют величины относительного объема стехиометрических зон \overline{P}_s , времени их существования τ и слабо – потери полного давления $(G_{NO_x} \approx 1/\sqrt{\Delta P^*})$.

Таким образом, возможности снижения *NO_x* в рамках базовой КС ограничены, при реализации схемы R-Q-L сводятся в основном к варьированию подвода воздуха по длине жаровой трубы с целью:

- оптимизации $\alpha_{KC_1} = \phi(L_{\mathcal{M}})$ изменением размера отверстий и расположения их рядов;

- интенсификации смешения воздуха и топлива для уменьшения объема стехиометрических областей \overline{P}_s изменением степени раскрытия жаровой трубы ($\Sigma F_a = var$);

- интенсификации процесса разбавления продуктов сгорания в области завершения процесса горения ($\eta_{\Gamma} \approx 0.95$) до коэффициента избытка воздуха порядка $\alpha_{KC} = 2.0...2.5$ (для быстрого снижения температуры диффузионного факела) варьированием размеров отверстий и расположением их рядов.

С учетом этих положений выполнен комплекс экспериментальных исследований с целью определения особенностей процессов горения в высокоскоростной серийной КС и использования полученных результатов при организации процесса горения по схеме R-Q-L. Испытания КС проводились в соста-

Рис. 3. Схема испытуемого узла КС и фронтового устройства

ве одногорелочного отсека (рис. 3) на природном газе с моделированием режимов работы КС в составе ГТП по критериям подобия:

- приведенной скорости на входе в КС $\lambda_{\kappa} = W_{\kappa}/a_{\kappa p}$;

- коэффициенту избытка воздуха $\alpha_{sc} = G_s/G_m L_o;$

- перепаду давления топливного газа на форсунке $\pi_{\phi}^* = P_{z}^* / P_{\kappa c}$.

Ниже представлены основные результаты исследований.

Влияние увеличения перепада давления на жаровой трубе показано на рис. 2 для трех уровней её зажатия: $\Sigma \overline{F}_0 = 1,0$ (серийный вариант), 0,85 и 0,80 и реализовано уменьшением площади основных отверстий. Коэффициент полноты сгорания при $\lambda_{\kappa} = 0,41$ и $\alpha_{KC} = 3,5$ вырос с $\eta_{\Gamma} = 0,82$ до $\eta_{\Gamma} = 0,89$, т.е. на $\Delta \eta_{\Gamma} \cong 7\%$.

Дополнительное увеличение перепада давления на завихрителе установкой воздухозаборника на головку жаровой трубы (рис. 4) привело к росту η_{Γ} с 0,82 (о) до 0,88 (Δ) при $\Sigma \overline{F_0} = 1,0$. Эффект влияния воздухозаборника в варианте с "зажатой" жаровой трубой $\Sigma \overline{F_0} = 0,80$ снизился в 3 раза, а на скорости $\lambda_{\kappa} = 0,28$ вообще не проявился. Замена исходного срывного диффузора на диффузор с внезапным расширением ($\overline{n} = 1,4$; рис. 4) позволила уменьшить потери полного давления в КС примерно на 1 %, увеличить перепад давления на завихрителе за счет умень-

Рис. 4. Схема фронтового устройства с воздухозаборником и диффузором

шения скорости воздуха в плоскости завихрителя.

Оптимизация состава смеси и процессов смешения во фронтовом устройстве осуществлялась варьированием

- расхода воздуха через завихритель;

- расхода воздуха через 1-й ряд отверстий и их положением по длине жаровой трубы.

Изменение $F_{_{3ab}}$ и $F_{_{0/0}}^{_{1pgd}}$ в исследованном

диапазоне выявило наличие оптимума η_{Γ} по обоим факторам (рис. 6). Смещение отверстий 1-го ряда по потоку, как и их полное закрытие, приводило к ожидаемому резкому падению η_{Γ} . Суммарный эффект от оптимизации параметров ФУ составил $\Delta \eta_{\Gamma} \approx +5\%$ (точки \blacksquare на рис. 2).

Оптимизация параметров системы охлаждения жаровой трубы уменьшением $\Delta \overline{G}_{oxi}$ с 38 % до 23 % привело к снижению известного эффекта «замораживания» [4] части отсепарированного к стенке жаровой трубы топливного газа и увеличению полноты сгорания на 3 % (рис. 7).

Оптимизация размеров и положения отверстий 2-го ряда выполнена варьированием расположения 8-ми отверстий на 2, 3 и 4-й секциях с разными комбинациями диаметра отверстий в одном ряду для обеспечения большей эффективной площади загромождения жаровой трубы и улучшения условия догорания на струях. Наилучший результат получен при расположении 2-го ряда отверстий на 3-й секции.

Результирующие данные по коэффициенту полноты сгорания топлива в КС с жаровой трубой, доработанной на основе результатов проведенных исследований, показаны на рис. 1 и рис. 2 точками •. Точки + этих рисунков соответствуют жаровой трубе с требуемым уровнем температурных полей газа, обеспеченных изменением числа и диаметра отверстий последнего ряда. Идентичность в

оценке η_{Γ} для существенно разной по числу и диаметру отверстий комбинации 3-го ряда говорит о достижении практически полного выгорания топливовоздушной смеси за 2-м рядом отверстий жаровой трубы при скорос-

 $\Delta \eta^{=3\%}$

1,00

ηr

0.95

20

Рис. 5. Влияние на η_{Γ} диффузора с фиксированным срывом

Рис. 6. Влияние на η_{Γ} площади завихрителя и отверстий

Рис. 7. Влияние на $\eta_{\scriptscriptstyle\Gamma}$ расхода охлаждающего воздуха

ΔGохл, %

0

0

40

 $\lambda_2 = 0.41, \alpha_{\kappa c} = 3.5$

тях потока воздуха $\lambda_{\kappa} = 0,41$. В результате коэффициент полноты сгорания топлива на $\alpha_{KC} = 3,5$ увеличен с $\eta_{\Gamma} = 0,82$ до $\eta_{\Gamma} = 0,96$ и превысил η_{Γ} серийной КС на режиме $\lambda_{\kappa} = 0,28$ приблизительно на 3,5 % (рис. 2); в рабочем диапазоне составов смеси $\alpha_{KC} = 4,0..6,0$ полнота сгорания получена равной $\eta_{\Gamma} = 0,98...0,99$ (рис. 1).

Жаровая труба с выбранным по результатам испытаний вариантом распределения подвода воздуха по длине испытана в составе одногорелочного отсека на стенде ОАО "Авиадвигатель" при практически полной имитации параметров с измерением концентрации NO_r и CO. Испытания подтвердили полученные в процессе доводки на стенде НПП "Мотор" основные характеристики КС $(\eta_{\Gamma} > 0.99; v_{cp}^{\max}; \Theta^{\max} \le 1.25)$ и правильность найденного закона подачи воздуха по длине жаровой трубы, обеспечившего концентрацию оксидов азота ниже 50 мг/м³ (рис. 8). Измерения концентраций вредных выбросов выполнялись приборами Testo-350, IMR-3010Р (Германия) и инфракрасным анализатором (СО,) IPA-PRO лаборатории РРМ SYSTEMS (Финляндия) [5]. Характер измерения температуры стенок жаровой трубы, полученный с помощью термоиндикаторной краски ТР-10, показал завершенность процесса горения перед последним рядом отверстий с максимумом температуры на газосборнике 720° С. Результаты сопоставления температурного состояния стенок жаровой трубы по термокраскам с результатами измерений температуры стенок накладными хромель-алюмелевыми термопарами (рис. 9) показали их практическую сходимость ($\Delta t_{\text{max}} = t_{mepm} - t_{TP-10} = 40$ °C), подтвердив тем самым целесообразность их использования в доводке KC.

Камера сгорания в компоновке, прошедшей контрольные испытания на стенде ОАО «Авиадвигатель», установлена в газотурбинный привод и успешно эксплуатируется в составе энергоустановки ГТЭ-10/95. В процессе работы ГТЭ-10/95 выполнены измерения концентраций загрязняющих веществ на выходе из ГТП (прибор Testo-324-3) в диапазоне рабочих нагрузок N_{э1} = 1,74...8,0 МВт $(\alpha_{KC} = 5, 7...4, 3)$. Концентрация NO_{r} , измеренная в составе ГТЭ-10/95 (рис. 10), близка к ранее полученному в составе одногорелочного отсека и на режиме номинальной мощности не превысила 50 мг/нм³; величина СО на режиме номинальной мощности составила ~210 мг/нм³.

Результаты проведенных исследований камеры сгорания в составе одногорелочного отсека и энергоустановки ГТЭ-10/95 подтвердили практическую реализацию высокоэффективного малоэмиссионного горения "богато – бедной" смеси без предварительного её перемешивания и показали возможность выполнения современных требований по экологии в отработанных надежных конструкциях камер сгорания двигателей предыдущих поколений путем их усовершенствования с использованием концепции R-Q-L.

Рис. 8. Результаты измерений концентрации NO_х в продуктах сгорания одногорелочного отсека

Рис. 9. Показания хромель-алюмелевых термопар и температура стенок жаровой трубы

Рис. 10. Результаты измерений концентрации вредных выбросов в продуктах сгорания ГТЭ-10/95

Список литературы

1. Рыжов А. А., Гребенюк Г. П., Фокин Н. И. Исследование особенностей процесса горения предварительно перемешенной "бедной" и "богатой" топливовоздушной смеси в однозонной камере сгорания // Сб. трудов АН РБ. - Уфа, 2001.

2. Булатов А. И., Серов А. В., Токарев В. В. Выбор закона рассредоточенной подачи струи воздуха по длине жаровой трубы в камеру сгорания промышленного ГТУ для уменьшения эмиссии окислов азота // Вестник ПГТУ. Аэрокосмическая техника и высокие технологии. Пермь, 1999. С. 14. 3. Кузнецов В. Р. Образование окислов азота в камерах сгорания ГТД. Труды ЦИАМ № 1086. М.: ЦИАМ, 1983. С. 8-18.

4. Рыжов А. А., Гребенюк Г. П. Проблемы организации низкоэмиссионного сжигания жидкого топлива и природного газа в однозонной камере сгорания ГТУ. Сборник трудов АН РБ. Уфа, 1999. С. 108-119.

5. Результаты испытаний жаровой трубы 953.03.2.2100 камеры сгорания двигателя ГТП-10/953 в одногорелочном отсеке на стенде ОАО «Авиадвигатель» / Технический отчет № 37618. Пермь, 2002.

PECULIARITIES OF CONVERTING SPEED-BOOSTED COMBUSTION CHAMBER OPERATING ON NATURAL GAS

© 2002 A. F. Ivakh, G. P. Grebenyuk, M. N. Ishbulatov, V. I. Arefin, N. I. Fokin

Federal Enterprise of Science and Manufacture "Motor", Ufa

The paper presents the results of experimental research into the peculiarities of the combustion process in a highly speed-boosted combustor when it starts to work on natural gas. Ways of updating the basic combustor design ensuring the required level of characteristics and NO_x concentration without previously stirring the air-fuel mixture have been determined.