УДК 621.37/39

ЗАРЯД МЕНИСКА ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ НА ВЫСОКОВОЛЬТНОМ ИГОЛЬЧАТОМ ЭЛЕКТРОДЕ

© 2006 С. М. Шепелев, Н. Д. Семкин

Самарский государственный аэрокосмический университет

Проведен расчет напряженности электрического поля и заряда на поверхности и в объеме мениска диэлектрической жидкости на высоковольтном игольчатом электроде с учетом влияния поверхностного заряда на результирующее поле.

Процесс электродиспергирования жидкости широко применяется от электро-каплеструйных регистрирующих устройств до научных приборов, создаваемых для изучения веществ в экстремальных состояниях.

В настоящее время для лабораторного исследования воздействия высокоскоростных частиц космической пыли на элементы конструкции космического аппарата (КА) используются ускорители твердых частиц, в основу которых положено ускорение заряженных твердых частиц в электростатическом поле.

Для изучения влияния на элементы конструкции КА жидких частиц разработан инжектор диэлектрических жидких частиц, состоящий из гидродинамического насоса, капилляра с игольчатым электродом, ускоряющего электрода, системы фокусировки.

В мениске диэлектрической жидкости на конце капилляра при высокой напряженности электрического поля образуется заряд. Действующие на него кулоновские силы приводят к разрушению капли, к отрыву частицы жидкости от мениска [1].

Критерий отрыва частицы от мениска записывается следующим образом:

$$W_{\Pi H} + W_{\Im} = 0, \qquad (1)$$

где $W_{\Pi H} = \int_{S} \alpha dS$ - поверхностная энергия,

$$W_{\mathfrak{I}} = \frac{1}{2} \int_{S} \sigma_{e}(\vec{r}) \varphi(\vec{r}) dS + \frac{1}{2} \int_{V} \rho_{e}(\vec{r}) \varphi(\vec{r}) dV -$$

энергия взаимодействия поверхностного и объемного заряда с внешним полем,

 σ_e - поверхностная плотность заряда на поверхности диэлектрической жидкости, ρ - объемный заряд в диэлектрической жидкости.

При этом необходимо учитывать, что при диспергировании изменение системы энергии должно быть минимальным.

Таким образом, важной задачей при исследовании электродиспергирования жидкости является определение напряженности поля и распределения заряда.

В слабопроводящих средах под влиянием сильных неоднородных электрических полей возникает конвективное движение. Объяснение этого явления основано на том, что в слабопроводящей среде с неоднородным распределением параметров (плотности, температуры, напряженности электрического поля) образуется объемный заряд, определяемый градиентом проводимости среды [2]. Механизм проводимости жидких диэлектриков, как и водных электролитов, носит ионный характер, а ионообразование происходит вследствие термической самодиссоциации примесных ионов. Наряду с электрокондуктивным механизмом зарядообразования заряд в приэлектродных областях может появиться вследствие перехода электрона через границу «электрод-жидкий диэлектрик» (ионизационно-рекомбинационный механизм). Ионообразование может происходить в результате приэлектродных реакций, причем у каждого из электродов возникает заряд одноименного с ним знака [3].

В работах [4, 5, 6] при изучении объемного заряда в слабопроводящих жидкостях отмечается хорошее экспериментальное согласие с моделью проводимости Френкеля [7]. В области высокой напряженности электрического поля, в соответствии с моделью Френкеля, проводимость диэлектрика задается соотношением

$$\sigma = \sigma_0 \exp \frac{e^{\frac{3}{2}} E^{\frac{1}{2}}}{(\pi \varepsilon)^{\frac{1}{2}} kT}.$$
(2)

Рассмотрим систему электродов, пространство между которыми заполнено вакуумом. Игольчатый электрод покрыт слоем диэлектрической жидкости.

Градиент проводимости обусловлен неоднородностью электрического поля и неоднородностью среды. На границе раздела жидкий диэлектрик-вакуум проводимость скачкообразно изменяется. Будем искать заряд диэлектрической жидкости на игольчатом электроде как объемный заряд жидкости и поверхностный заряд на границе раздела двух сред жидкость-вакуум.

Объемный заряд в жидкости будем находить в соответствии с [6], решая совместно систему уравнений сохранения заряда и закона Гаусса:

$$div\left(\sigma \vec{E} + \rho_e \vec{V} + \frac{\partial}{\partial t} \left(\varepsilon_0 \vec{E} + \vec{P}\right)\right) = 0, \qquad (3)$$

$$div(\varepsilon_0 \vec{E} + \vec{P}) = \rho_e \,. \tag{4}$$

Сделав допущение, что жидкость поляризуется линейно (изменение μ , измеренное в полях до 10 кВ/мм, у различных жидкостей не более 1 %) [8], получим уравнение

$$\frac{\partial \rho_e}{\partial t} = -\left(\frac{\sigma}{\varepsilon}\rho_e + Egrad\sigma\right).$$
(5)

Решая его при начальных условиях $\rho|_{t=0} = 0$, получим

$$\rho_e = -\frac{\varepsilon}{\sigma} A \left(1 - exp\left(-\frac{\sigma}{\varepsilon} t \right) \right), \tag{6}$$

где $A = E grad \sigma$.

Получим в установившемся режиме

$$\rho_{ey} = -\frac{\varepsilon}{\sigma} \stackrel{\text{o}}{E} grad\sigma \,. \tag{7}$$

Заряд на границе раздела обусловлен током в жидком диэлектрике:

$$\frac{\partial \boldsymbol{\sigma}_{\Gamma P}}{\partial t} = j\big|_{\Gamma P} = \left(\boldsymbol{\sigma} E\right)\big|_{\Gamma P}.$$
(8)

Пренебрегая влиянием объемного заряда, в приближении к квазистационарности процесса решаем задачу электростатики с граничными условиями на краю ускоряющего электрода, на краю игольчатого электрода и на границе раздела двух диэлектриков (жидкость-вакуум), на которой имеется поверхностный заряд σ_{e} .

Так как результаты аналогового моделирования электростатических полей реальных электродных систем в электролитической ванне по методу К. С. Демирчяна [9] показали, что изменение диаметра отверстия ускоряющего электрода в широком диапазоне не оказывает заметного влияния на распределение напряженности поля в непосредственной близости от кончика иглы, этим влиянием можно пренебречь. Так как диаметр ускоряющего электрода много больше диаметра острия, рассмотрим систему электродов игла-плоскость.

Расчетную модель системы электродов удобно представить в виде софокусных гиперболоидов вращения. Одним из них, наиболее узким, аппроксимируется игольчатый электрод, вторым - поверхность жидкости, а третьим (вырожденным в плоскость) - ускоряющий электрод, не имеющий отверстий.

Система симметрична в цилиндрических координатах по углу, поэтому задача решается на плоскости. Потенциал электрического поля в области между границей жидкости и ускоряющим электродом и в области между границей жидкости и игольчатым электродом является гармоническим, и поэтому в этих областях можно построить аналитическую функцию комплексной переменной:

f(z) = V(x, y) + iU(x, y) .

Рассмотрим электростатическую задачу в комплексной плоскости *z* (рис. 1).

Рис. 1. Схема системы электродов в плоскости Z

Комфорное преобразование гиперболоида над плоскостью (рис. 1) в плоский бесконечный конденсатор (рис. 2) выглядит следующим образом [10]:

$$w = \frac{h}{\alpha} ln \left(\frac{z \sin \alpha}{h} + \sqrt{\frac{z^2 \sin^2 \alpha}{h^2} + 1} \right). \tag{9}$$

Рис. 2. Схема системы электродов в плоскости W

Определим поле плоского бесконечного конденсатора, между обкладками которого на границе раздела диэлектрика и вакуума заряд распределен с поверхностной плотностью σ_e . Для этого будем решать совместно уравнения Лапласа для ψ_1 и ψ_2 при граничных условиях: $\psi_1(h) = U_0$, $\psi_2(0) = 0$, $\varepsilon_0 E_2$ -- $\varepsilon_0 \varepsilon_1 E_1 = \sigma_e$.

Выражения для комплексного потенциала в *W* плоскости выглядят следующим образом:

$$\psi_1 = \frac{U_0 - a_1 \frac{\sigma_e}{\varepsilon_0}}{K} (w - h) + U_0, \qquad (10)$$

$$\Psi_{2} = \left(\varepsilon_{1} \frac{U_{0} - a_{1} \frac{\sigma_{e}}{\varepsilon_{0}}}{K} + \frac{\sigma_{e}}{\varepsilon_{0}}\right) w, \qquad (11)$$

где $K = (\varepsilon_1 - 1)a_1 + h$ - коэффициент, характеризующий параметры слоя диэлектрической жидкости.

Расстояние от ускоряющего электрода до поверхности жидкости *a*₁ нетрудно вычислить из уравнения эквипотенциальных линий:

$$\left(\frac{y}{\frac{h}{\sin\alpha}\sin\frac{\alpha U}{U_0}}\right)^2 - \left(\frac{x}{\frac{h}{\sin\alpha}\cos\frac{\alpha U}{U_0}}\right)^2 = 1.$$
 (12)

Из (12) получим

$$a_1 = \frac{h}{\alpha} \arcsin\frac{a\sin\alpha}{h}.$$
 (13)

Решая (8) совместно с (10), получаем дифференциальное уравнение

$$\frac{\partial \sigma_e}{\partial t} = \sigma_1 \frac{U_0}{K} - \frac{\sigma_1 a_1 \sigma_e}{\varepsilon_0 K}, \qquad (14)$$

где
$$\sigma_1 = \sigma_0 \exp \frac{e^{\frac{3}{2}} U_0^{\frac{1}{2}}}{(K\pi\epsilon_1)^{\frac{1}{2}} kT}.$$

Решая уравнение (14), получим

$$\sigma_{a} = \frac{\varepsilon_{0}U_{0}}{a_{1}} \left(1 - exp\left(-\frac{\sigma_{1}a_{1}}{\varepsilon_{0}K}t \right) \right).$$
(15)

С учетом (15) уравнения (10) и (11) перепишутся:

$$\Psi_{1} = \frac{U_{0}}{K} exp\left(-\frac{\sigma_{1}a_{1}}{\varepsilon_{0}K}t\right)(w-h) + U_{0} =$$
$$= A(t)(w-h) + U_{0}, \qquad (16)$$

$$\Psi_{2} = \left[\varepsilon_{1} \frac{U_{0}}{K} exp\left(-\frac{\sigma_{1}a_{1}}{\varepsilon_{0}K}t \right) + \frac{U_{0}}{a_{1}} \left(1 - exp\left(-\frac{\sigma_{1}a_{1}}{\varepsilon_{0}K}t \right) \right) \right] w = B(t)w. \quad (17)$$

Из теории комфорного преобразования известно [11]:

$$E = E_x + iE_y = -i\frac{\overline{\partial\varphi}}{\partial z}.$$
 (18)

Сделав преобразование в плоскость Z с помощью (9), из уравнений (16) и (17) получим комплексный потенциал системы электродов гиперболоид - плоскость со слоем жидкости на гиперболоиде (игле). Продифференцируем его:

$$\frac{\partial \varphi_1}{\partial z} = A(t) \left(\frac{h \sin \alpha}{\alpha \sqrt{z^2 \sin^2 \alpha + h^2}} \right), \tag{19}$$

$$\frac{\partial \varphi_2}{\partial z} = B(t) \left(\frac{h \sin \alpha}{\alpha \sqrt{z^2 \sin^2 \alpha + h^2}} \right).$$
(20)

Из (18), (19) и (20) получим выражения для модуля напряженности электрического поля:

$$\left|\overline{E}_{1}\right| = A(t) \left(\frac{h}{\alpha}\right)_{4} \frac{1}{\left(\frac{h^{2}}{\sin^{2}\alpha} + \rho^{2} - z^{2}\right)^{2} + 4\rho^{2}z^{2}}, (21)$$

$$\overline{E}_{2} = B(t) \left(\frac{h}{\alpha}\right)_{4} \sqrt{\frac{1}{\left(\frac{h^{2}}{\sin^{2}\alpha} + \rho^{2} - z^{2}\right)^{2} + 4\rho^{2}z^{2}}} . (22)$$

Зависимости напряженности электрического поля на оси *z* в жидком диэлектрике (в трансформаторном масле при h = 0,03 м, толщине диэлектрика 10^{-5} м, угле $\alpha = 99^{\circ}$ и $U_0 = 1000$ В) на кончике острия от времени, от расстояния между игольчатым электродом и ускоряющим, от толщины слоя диэлектрической жидкости приведены на рис. 3, 4, 5, соответственно.

Рис. 3. Зависимость напряженности Е, у острия иглы от времени

Рис. 4. Зависимость напряженности Е₁ у острия иглы от расстояния между иглой и ускоряющим электродом

Исходя из того, что поверхностный заряд обусловлен скачком нормальной составляющей электрической индукции $\varepsilon_0 E_2$ -- $\varepsilon_0 \varepsilon_1 E_1 = \sigma_e$, получим значение истинного поверхностного заряда σ_{eu} :

$$\sigma_{a\dot{e}} = \frac{\varepsilon_0 h U_0}{a_1 \alpha} \left(1 - exp \left(-\frac{\sigma_1 a_1}{\varepsilon_0 K} t \right) \right) \times \left(\frac{1}{\left(\frac{h^2}{\sin^2 \alpha} + \rho^2 - z^2 \right)^2 + 4\rho^2 z^2} \right), \quad (23)$$

где ρ и *z* координаты точек, лежащих на поверхности жидкости.

На рис. 6 показана зависимость плотности заряда на поверхности мениска диэлектрической жидкости (в трансформаторном масле при h = 0,03 м, толщине диэлектрика 10^{-5} м, угле $\alpha = 99^{\circ}$ и $U_0 = 1000$ В) при $\rho = 0$ (на оси *z*) от времени.

Из (7) и (21), учитывая, что вектор напряженности и градиент проводимости противоположно направлены, и пренебрегая временем релаксации заряда, получим выражение для объемного заряда в диэлектрической

Рис. 5. Зависимость напряженности Е, у острия иглы от толщины слоя диэлектрика

Рис. 6. Зависимость плотности заряда на поверхности диэлектрической жидкости от времени

жидкости мениска на конце игольчатого высоковольтного электрода:

На рис. 7 приведена зависимость плотности объемного заряда мениска диэлектрической жидкости (в трансформаторном масле при h = 0.03 м, толщине диэлектрика 10^{-5} м, угле $\alpha = 99^{\circ}$ и $U_0 = 1000$ В) у острия

игольчатого электрода от времени без учета влияния поверхностного заряда на результирующее поле.

Действительно, объемный заряд уменьшается во времени вместе с напряженностью поля, обеспечивающей градиент проводимости. Рассмотрев (б) и (24), видим, что релаксация объемного заряда происходит медленнее уменьшения напряженности поля, вызванного образованием поверхностного заряда. Это значит, что объемный заряд в мениске будет очень мал и все процессы обусловлены поверхностным зарядом диэлектрической жидкости. Следовательно, в (1) при определении параметров и режимов диспергирования энергией взаимодействия объемного заряда с внешним полем можно пренебречь.

Рис. 7. Зависимость объемной плотности заряда мениска диэлектрической жидкости от времени

Заключение

Количественные оценки, сделанные в рамках рассмотренной модели, позволяют утверждать, что при выполнении очевидного требования влияния поверхностного заряда мениска жидкости на игольчатом электроде на электрическое поле системы электродов игла – плоскость объемным зарядом мениска диэлектрической жидкости можно пренебречь, а решающее влияние на процесс диспергирования оказывает поверхностный заряд мениска жидкости.

Применение предложенной модели позволяет определить критерии электродиспергирования и параметры ускоряемой жидкой диэлектрической частицы.

Список литературы

1. Нагорный В. С. Электро-капле-струйные регистрирующие устройства. - Л.: Машиностроение. Ленинградское отделение, 1988.

 Остроумов Г. А. Взаимодействие электрических и гидродинамических полей.
 М.: Наука, 1979.

3. Стишков Ю. К., Остапенко А. А. Электро-гидродинамические течения в жидких диэлектриках. - Л.: Издательство Ленинградского университета, 1989.

4. Апфельбаум М. С., Поляский В. А. Об образовании объемного заряда в слабопроводящих жидкостях // Магнитная гидро-

динамика. - 1982. № 1. – С. 71-76.

5. Ятовский Е. И., Апфельбаум М. С. О силе, действующей от игольчатого электрода на слабопроводящий жидкий диэлектрик, и вызываемых ею течениях //Магнитная гидродинамика. - 1977. №4. – С. 73-80.

6. Апфельбаум М. С., Баранова Т. Н., Северов А. М., Скуратовский Н. О., Янтовский Е. И. Электроковекция в диэлектрических жидкостях // Труды VIII рижской конференции. - С. 275-278.

7. Френкель Я. И. К теории электрического пробоя в диэлектриках и электронных полупроводниках // ЖЭТФ. - 1938. т.8. № 12.-С. 1292-1301.

8. Любимов Ю. А. Диэлектрическое насыщение в жидкостях и полимерах // Физика и физико-химия жидкостей. - М.: Издво МГУ, 1973. – Вып. 2.

9. Демирчян К. С. Моделирование магнитных полей. - Л.: Энергия, 1974.

10. Новгородцев А. Б., Фатхиев А. Р., Фатхиева И. С. Применение функции комплексного переменного к расчету электростатических полей электродов сложной конфигурации. - Уфимский авиационный институт, 1986.

11. Свешников А. Г., Тихонов А. Н. Теория функций комплексной переменной. - М.: Физматлит, 2001.

DIELECTRIC LIQUID MENISCUS CHARGE ON A HIGH-VOLTAGE NEEDLE ELECTRODE

© 2006 N. D. Syomkin, S. M. Shepelev

Samara State Aerospace University

The paper presents the calculation of electric field intensity and charge on the surface in the volume of dielectric liquid meniscus on a high-voltage needle electrode with regard to the influence of the surface charge on the resultant field.