СЕТЕВЫЕ ЦИФРОВЫЕ ВОЛОКОННО-ОПТИЧЕСКИЕ ДАТЧИКИ ПЕРЕМЕЩЕНИЯ С ЗАКРЫТЫМ ОПТИЧЕСКИМ КАНАЛОМ

© 2012 Г. И. Леонович¹, С. А. Матюнин², Р. Р. Акбаров³, С. В. Ивков³, Н. А. Ливочкина³, А. И. Глушков²

¹Секция прикладных проблем при Президиуме РАН ²Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет) ³ФГУП ГНПРКЦ «ЦСКБ-Прогресс»

Предложены принципы построения, структурные схемы и алгоритмы функционирования цифровых волоконно-оптических датчиков перемещения с закрытым оптическим каналом, характеризующихся высокой надежностью и простотой интегрирования в пассивную сенсорную сеть.

Пассивная волоконно-оптическая сенсорная сеть, внутриволоконная Брэгговская решетка, сенсорное покрытие, цифровые волоконно-оптические датчики перемещения с закрытым оптическим каналом.

Введение

Пассивные волоконно-оптические сенсорные сети (ПВОСС) в ближайшие 10 лет на 80...90% покроют потребности аэрокосмической и оборонной отраслей [1-4]. Главное достоинство ПВОСС – легко реализуемое встраивание компонентов сети непосредственно в несущие конструкции, поворотные и деформируемые плоскости, силовые агрегаты и наружные элементы контрольноизмерительной аппаратуры. Этому содействуют такие качества ПВОСС, как сверхмалые массогабаритные показатели, высокая устойчивость к дестабилизирующим факторам и активным средам, долговечность. Активно внедряет и инвестирует в ПВОСС военно-промышленный комплекс США и Западной Европы. В частности, в аналитическом обзоре исследовательской технологической организации НАТО (RTO NATO) особое внимание уделено разработке и прогнозу использования волоконно-оптических датчиков (ВОД) и бортовых сенсорных сетей на основе Брэгговских решеток [1]. В числе основных поставщиков сетевого и сенсорного оборудования - компании Elcis, Leine&Linde, M.C.B., Tamagawa Seiki, Sony, Siemens, TM, Megetron, Motorolla, IEI Technology, Fraba Posital, Kuebler, Omron, Pepperl+Fuchs, Heidenhain и др.

В настоящее время наблюдается дефицит ВОД угловых и линейных перемещений с закрытым оптическим каналом (ЗОК), не предложено ни одного комплексного решения задачи создания ПВОСС с универсальным протоколом сбора и обработки данных, в зачаточном состоянии целый сектор гибридных датчиков, построенных на принципах взаимодействия сенсорных покрытий с сопряженным с ними оптическим волокном (ОВ). В статье приведен анализ ряда теоретических и экспериментальных результатов, которые могут стать основой для создания широкой номенклатуры цифровых ВОД ЗОК перемещения для ПВОСС.

Чувствительные элементы и покрытия

Наиболее распространенным, универсальным и эффективным чувствительным элементом интегрированных ВОД считается формируемая в сердцевине ОВ внутриволоконная Брэгтовская решетка (ВБР) [1-4]. ВБР представляет собой участок ОВ длиной L_{BG} =0,3...3 см, в котором показатель преломления сердцевины n_0 промодулирован в продольном направлении с пространственным периодом L=300...600 нм и глубиной модуляции δn_0 =10⁻³...10⁴ (рис. 1). Можно создать ВБР с потерями ≤0,1 дБ, с точностью ±0,05 нм и высоким подавлением помех соседнего канала (≥40дБ). Для низшей пространственной моды структура представляет собой спектрально-селективное зеркало с коэффициентом отражения K_o на резонансной длине волны $I_{BG0} = 2n_{0f}\Lambda$. За счет увеличения числа «штрихов» решетки до $N_{BG}=10^3...10^4$ значение $K_{omax}(I)$ »1.

Смещение λ_{BG} , используемое для со-

Рис. 1. Внутриволоконная решетка Брэгга

здания встроенных сенсоров, зависит от температуры световода и от приложенных к нему механических растягивающих или сжимающих напряжений [4]:

$$\Delta I_{BG} = 2n_0 \Lambda \left\{ \left\{ 1 - \left(\frac{n_0^2}{2} \right) r_{12} - n(r_{11} + r_{12}) \right\} e + \left[a + \frac{1}{n_0} \frac{dn_0}{dT} \right] \Delta T , \right\}$$
(1)

где ΔT - изменение температуры; ε - приложенное механическое напряжение; r_{ij} - коэффициенты упругооптического тензора; v - коэффициент Пуассона; α - коэффициент теплового расширения кварцевого стекла.

Типичные значения сдвига $\Delta \lambda_{BG}(\Delta T)$ составляют ~0,01 нм/К от относительного удлинения сенсорного участка световода ~ $10^3 \times \Delta L_{BG}/L_{BG}$ нм. Современные измерительные средства позволяют определить λ_{BG} и $\Delta \lambda_{BG}$ с точностью до долей нм при измерении $\Delta L_{BG}(x)$ и $\Delta n_0(x)$ при различных внешних воздействиях *x* на участок L_{BG} . К неоспоримым достоинствам ВОД на ВБР можно отнести малые размеры и массу, универсальность, химическую стойкость, возможность создания сенсорных сетей. Недостатки – пока ограниченный перечень измеряемых пара-

метров, связанный с зачаточным состоянием развития промежуточных сенсорных элементов и покрытий OB, основанных на преобразовании измеряемого параметра x в механическое напряжение и/или температуру (рис. 1).

Другие эффекты, предлагаемые, в частности, для измерения перемещения и давления: 1) возбуждение и смещение мод при микроизгибах по большому радиусу (R>10 мм) и 2) потери в ОВ при макроизгибах по малому радиусу (*R*≈1...10 мм). В первом варианте используется зависимость выходной мощности возбуждаемых и смещаемых мод от изгиба OB с амплитудой до 1 мм при длине сенсорного участка 1 см. Во втором случае, по аналогии с туннельным прохождением частиц через потенциальный барьер, разность коэффициентов преломления сердцевины и оболочки трактуется как «высота барьера» [6]. При изгибе с малым радиусом имеет место понижение этого барьера, и в результате увеличивается вероятность выхода излучения из сердцевины в оболочку.

Потери мощности сигнала в децибелах на изгибе вычисляют по формуле [6]:

$$A = 10 \lg \left(\frac{J}{J_0}\right) = \frac{5j R \lg e}{2\sqrt{rR}} P_D , \qquad (2)$$

где J, J_0 – интенсивность поля при изогнутом и прямом волокне соответственно; j – угол изгиба; r – радиус сердцевины; R – радиус изгиба; P_D – вероятность туннельного перехода через барьер.

Из (2) следует, что потери прямо пропорциональны длине изогнутого участка волокна и возрастают с уменьшением радиуса кривизны до 4 дБ и более. Достоинство эффекта - простота реализации точечных и распределенных датчиков, построенных на измерении амплитуды оптического сигнала. Недостатки сенсоров с подвижным ОВ ограниченное число пространственных эволюций при больших динамических нагрузках на сенсорный участок ОВ, а также связанная с механическими микроповреждениями деградация ОВ и нестабильность результатов. Вместе с тем, при фиксированных изгибах ОВ, открываются возможности не только для вывода, но и для ввода светового излучения от источника, включенного в измеряемую электрическую схему с цифровым выходом [7].

К числу перспективных составляющих пассивных ВОД относятся гибридные сенсоры, В первую очередь интегральнооптические (ГИОС) [8-10]. ГИОС в общем случае представляет собой составной чувствительно-кондуцирующий элемент, в котором сопряжены два типа преобразователей химический и физический. Химический сенсор состоит из слоя чувствительного материала, который формирует селективный отклик на определяемый компонент. Физический преобразователь - трансдьюсер - преобразует энергию, которая возникает в ходе реакции селективного слоя с измеряемым воздействием (компонентом), в модулированный по определенным параметрам оптический сигнал.

Для повышения избирательности и расширения динамического диапазона используются селективно-кондуцирующие слои (ионообменные, гидрофобные, фотохромные и другие пленки). В зависимости от типа ГИОС их действие основано на принципах поглощения и отражения света, люминесценции, изменения объема, деформации и др. [1-4, 7-9].

До 70% бортовых датчиков КА и ЛА являются преобразователями угловых и линейных перемещений. Причем, в первую очередь востребованы датчики с цифровым выходом, устойчиво работающие в жестких условиях эксплуатации. Практически все известные цифровые ВОД перемещения построены по схеме с открытым оптическим каналом. Одним из перспективных направлений для создания цифровых ВОДЗОК перемещения является использование ГИОС. В работе [10] описан принцип построения ВОД давления, основанный на кондуцирующем эффекте слоя из алифатического полиуретана со сферическими наночастицами двуокиси кремния толщиной 10...1000 нм. Такое покрытие дает 5...40-кратное увеличение динамического диапазона и чувствительности датчика к механическому и ультразвуковому воздействию. Перемещающийся источник воздействия, закрепленный на объекте измерения, открывает возможности для построения на базе подобного и других кондуцирующих ГИОС различных типов ЦВОДЗОК.

Цифровые ВОД перемещения с закрытым оптическим каналом

В большинстве ПВОСС используется импульсный источник излучения на основе полупроводниковых лазеров или светодиодов. Для получения пространственного, временного или волнового распределения кодовых импульсов, количество, амплитуда и взаимное расположение которых коррелирует с измеряемой величиной, можно использовать оптические линии задержки и профилированные ГИОС.

На рис. 2, *а* в качестве примера показана структурная схема ЦВОДЗОК для преобразования линейного перемещения в оптический последовательный двоичный код.

Рис. 2. Цифровой волоконно-оптический датчик линейного перемещения с закрытым оптическим каналом (m=5)

За основу ВОД берется оптический разветвитель (сплиттер) и отрезки ОВ, число m которых равно разрядности цифрового кода. На ОВ накладывается кодовая маска, выполненная из набора экранирующих ЭЭ и кондуцирующих КЭ элементов. Рисунок ВБР совпадает с рисунком шкалы, т.е. решетки наносятся под КЭ. Перемещающийся шток снабжен источником управляющего воздействия ИУВ (e_0), например, нажимным выступом, ширина которого равнозначна участку ОВ с $N_{BG} \approx 10^3$ штрихами.

В датчике используется эффект отражения узкополосного оптического импульса

от деформируемого участка OB со смещенной ВБР, брэгтовская длина волны I_{BG} которой связана с центральной длиной волны источника излучения I_{III} соотношением (1) таким образом, что длина волны отраженного сигнала равна

$$I_{o} = \begin{cases} I_{BG} \neq I_{III} \text{ при } e << e_{0} \\ I_{BG} + \Delta I_{BG} = I_{BG0} = I_{III} \text{ при } e = e_{0} \end{cases}, \quad (3)$$

где значения *е* определяются профилем кодовой маски.

С целью временного разделения разрядных каналов задержка отраженного импульса в ОВ под *i*-м КЭ *k*-й дорожки шкалы плавно варьируется в пределах элемента и всей шкалы в соответствии с алгоритмом

$$\Delta t_{ik} = 2 \left[\left(\frac{L_{k0}}{c} + (i - 1 \rightarrow i) \left(\frac{L_{x}}{v 2^{k}} \right) \right], \quad i = 2, 4, 6, \dots, 2^{k}, \quad (4)$$

где L_{k0} – длина согласующей петли OB для *k*-й разрядной дорожки; L_x – диапазон перемещения, равный длине чувствительного участка ВОД; *с* – скорость распространения импульса в OB.

Согласующие петли выполняют функцию упорядоченного сдвига импульсов разрядных дорожек, как показано на рис. 2, б. В частности, длины петель могут выбираться из соотношения

$$L_{k0} = \frac{M(k-1)L_x}{2^{k-1}} , \qquad (5)$$

где *М* - масштабирующий коэффициент, значение которого определяется длительностью импульса, дисперсионными явлениями, инерционностью фотоприемного устройства и электронных компонентов ЭБ.

На рис. З показана структурная схема цифрового волоконно-оптического преобразователя линейного перемещения с закрытым оптическим каналом, работающего как на прямой, так и на отраженной волне.

Датчик представляет собой изогнутый по топологии кодирующих дорожек световод с сенсорным покрытием, выполненным в форме цифровой шкалы по аналогии с предыдущим примером. В таком ВОД реализуется управление оптическим бюджетом в соответствии с алгоритмом цифровой амплитудной модуляции. При экранировании управляющего воздействия (УВ) участки ОВ под ЭЭ имеют коэффициент пропускания $\tau = \tau_0 \approx 1$ (затухание $A \approx 0$), а при наличии КЭ $t_i = t_0 - 2^i \Delta t$, где i – номер разрядной дорожки, Dt – квант дискретизации пропускания.

Рис. 3. ВОД линейного перемещения с амплитудной цифровой модуляцией оптического сигнала

Формированием разделительных ВБР реализуется дополнительное разделение каналов по длине волны, способствующее снижению требований к точности выдерживания значения е. Снижению инструментальной погрешности датчика способствуют выполнение маски в соответствии с кодом Грея, увеличение длины участка ОВ с ВБР относительно длины кодирующего элемента, нанесение ВБР с девиацией периода L, а также применение сенсорно-кондуцирующих покрытий, фокусирующих воздействие на центр основания КЭ, сопряженного с ОВ. Достижение высокой разрешающей способности при превышении участков с длины ВБР (L_{BG}=0,3...3 мм) длины кодирующих элементов шкалы ($L_{BG} > \Delta L_{xik}$) осуществляется формированием нониусных шкал с редукцией кванта измерения перемещения и реализацией других известных способов.

В простейшем накапливающем датчике количество квантованных дорожек уменьшается до двух. При этом за счет взаимного смещения дорожек с квантами шириной $a_0/2$ по координате перемещения *x* на величину $a_0/4$ (a_0 – период квантования) реализуется алгоритм формирования кода перемещения и его направления.

Пассивные сенсорные сети на цифровых ВОД перемещения с закрытым оптическим каналом

При проектировании ПВОСС под конкретный объект необходим комплексный подход к решению нескольких задач, связанных со следующими основными факторами: количество и места расположения точек и групп учета (съема данных); место расположения устройства сбора и обработки информации (электронного блока); кратность резервирования датчиков и каналов передачи информации; объем информации; период опроса и допустимая задержка получения конечной информации.

На рис. 4 представлен пример топологии ПВОСС, построенной на однотипных рефлектометрических датчиках, инициируемых импульсным источником излучения, и соответствующий оптический бюджет сети.

Рис. 4. ПВОСС на рефлектометрических датчиках (a) и оптический бюджет сети (б)

Минимальное затухание $A_{\min} = A_L$ имеет место, когда коды во всех R датчиках равны нулю, максимальное (которое используется для расчетов) - при максимальных значениях всех кодов N_r . Оптический бюджет рассчитывается исходя из 2...3-кратного превышения разрядным импульсом с максимальным затуханием max (A_{ikr}) порогового значения A_{nop} , определяемого затуханием в линии, шумами, эксплуатационными температурными и деформирующими девиациями (вибрации, ускорения, перепады давления и т.п.):

$$A_{\Sigma} = \sum_{r} \sum_{k} \sum_{i} \max\left(A_{rki}\right) + \sum_{s} A_{cnm\,s} + A_{L}, \quad (6)$$

где $A_{cnm \ s}$ – затухание в соединениях *s*-го сплиттера с ВОД и ОВ (в общем случае $s^{3}k$); A_{L} – затухание в сетевом ОВ.

Временной бюджет рассчитывается в соответствии с выражением

$$T_{\Sigma} = \frac{2L}{c} + \sum_{r=1}^{R} \sum_{k=1}^{K} \max(\frac{2L_{rk}}{c}) , \qquad (7)$$

где *L_{rk}* – длина участка OB, задействованного в *k*-й разрядной дорожке *r*-го датчика.

Спектральный бюджет определяется как

$$\Delta I_{\Sigma} = \sum_{r} \Delta I_{r} = \sum_{r} \sum_{k} \left(\Delta I_{BGrk} + \Delta I_{srk} \right), \quad (8)$$

где Δl_{srk} – защитный интервал между каналами.

Библиографический список

1. Lance R.W., Parker A. R., Ko W.L., Piazza A., Chan P. Application of Fiber Optic Instrumentation [Электронный ресурс]. – http:// www.rto.nato.int

2. Shoenfeft N.M. Fiber optic sensors for the military [Электронный ресурс]. – http://www.dtic.mil/dtic/tr/fulltext/u2/

3. Optical Fiber Sensors Guide. Fundamentals & Applications [Электронный ресурс]. – <u>http://www.micronoptics.com/uploads/library/do</u> cu-

ments/Micron%20Optics%20Optical%20Sensin g%20Guide.pdf

4. Reutlinger A., Glier M., Zuknik K.-H., Hoffmann L., Müller M., Rapp S., Kurvin C., Ernst T., McKenzie I., Karafolas N. Fiber optic sensing for telecommunication satellites [Электронный pecypc]. – <u>http://www.llb.mw.tum.de/</u> download/papers/abstracts/2008_rapp_ofs.pdf

5. Аксенов, В.А., Волошин, В.В., Воробьев, И.Л. и др. Потери в одномодовых волоконных световодах при однократных изгибах по малому радиусу. Прямоугольный профиль показателя преломления [Электронный ресурс] // Р.Э. – 2004. – Т. 49, № 6. – С. 734–742.

6. Устройства ввода-вывода сигнала на изгибе волокна. [Электронный ресурс]. – <u>http://tkc.by/ru/products/product-162.html</u>

7. El-Sherif M., Bansal L., Yuan J. Fiber Optic Sensors for Detection of Toxic and Biological Threats [Электронный ресурс]. – <u>http://www.mdpi.org/sensors</u>

8. Smart Polymeric Coatings—Recent Advances / Advances in Polymer Technology, Vol. 26, No. 1, 1–13 (2007)

9. Cherpak V. Fiber-optic sensors based on conductive polymers. [Электронный ресурс]. – <u>http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnu</u> mber=5423404&url=http%3A%2F%2Fieeexplo re.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber %3D5423404

10. Леонович, Г. И. Волоконно-оптический датчик давления для системы управления двигателем БПЛА [Текст]. /Г. И. Леонович, С. А. Матюнин, А. И. Глушков, Н. А. Ливочкина, В. И. Соловьев / Вестник Самарского государственного аэрокосмического университета имени академика С.П. Королёва (национального исследовательского университета), 2011. - №3. -Ч. 3. -С. 397-402.

NETWORK DIGITAL FIBER-OPTIC DISPLACEMENT SENSORS WITH CLOSED OPTICALETWORK DIGITAL FIBER-OPTIC DISPLACEMENT SENSORS WITH CLOSET OPTICAL CHANEL

© 2012 G. I. Leonovich¹, S. A. Matjunin², R. R. Akbarov³, S. V. Ivkov³, N. A. Livochkina³, A. I. Glushkov²

¹Section of applied problems of the RAS Presidium ²Samara State Aerospace University named after academician S. P. Korolyov (National Research University) ³FSUE SRPSRC «TsSKB-Progress»

The principle of construction, block diagrams and operation algorithms in digital fiber-optic displacement sensors with a closed optical channel, characterized by high reliability and ease of integration into the passive sensor network.

Passive fiber-optic sensor network, fiber Bragg grating, touch coating, digital fiber optic displacement sensors with a closed optical channel.

Информация об авторах

Леонович Георгий Иванович, доктор технических наук, профессор, начальник Поволжского отделения, секция прикладных проблем при Президиуме РАН. Е-mail: <u>leogi1@mail.ru</u>. Область научных интересов: системы управления, информационноизмерительные устройства и системы.

Матюнин Сергей Александрович, доктор технических наук, профессор, заведующий кафедрой «Электронные системы и устройства», Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет). Е-mail: <u>S.A.Matyunin@yandex.ru</u>. Область научных интересов: системы управления, информационно-измерительные устройства и системы.

Акбаров Руслан Рустамович, аспирант, Самарский государственный университет. Область научных интересов: информационно-измерительные системы.

Ивков Сергей Валерьевич, инженер, ФГУП ГНПРКЦ «ЦСКБ-Прогресс». Область научных интересов: информационно-измерительные устройства.

Ливочкина Наталья Александровна, инженер, ФГУП ГНПРКЦ «ЦСКБ-Прогресс». Область научных интересов: теплотехнические измерения.

Глушков Артем Иванович, магистрант, Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет). Область научных интересов: теплотехнические измерения.

Leonovich Georgiy Ivanovich, doctor of technical sciences, professor, head of the Volga Department, Section of Applied Problems of the Presidium of the Russian Academy of Sciences. E-mail: leogi1@mail.ru. Area of scientific: control systems, information-measuring devices and systems.

Matjunin Sergey Aleksandrovich, doctor of technical sciences, professor, head of the "Electronic Systems and Devices", Samara State Aerospace University named after academician S. P. Korolyov (National Research University). E-mail: <u>S.A.Matyunin@yandex.ru</u>. Area of scientific: control systems, information-measuring devices and systems.

Akbarov Ruslan Rustamovich, post-graduate student, Samara State University. Area of scientific: information and measurement systems.

Ivkov Sergey Valeryevich, engineer, FSUE SRPSRC «TsSKB-Progress». Area of scientific: information-measuring devices.

Livochkina Natalia Aleksandrovna, engineer, FSUE SRPSRC «TsSKB-Progress». Area of scientific: measurement of thermal engineering.

Glushkov Artem Ivanovich, graduate student, Samara State Aerospace University named after academician S. P. Korolyov (National Research University). Area of scientific: measurement of thermal engineering.