УДК 534.08

ИЗМЕРЕНИЕ ИМПУЛЬСНЫХ ДАВЛЕНИЙ В ОБЪЕМЕ РАСПЛАВА В УСЛОВИЯХ ИНТЕНСИВНЫХ ИМПУЛЬСНЫХ ПОМЕХ

© 2012 Р. Ю. Юсупов, Е. Е. Кострюков

Самарский государственный аэрокосмический университет имени академика С.П. Королева (национальный исследовательский университет)

Приведена методика измерения давления в расплаве жидкого металла при воздействии импульсным магнитным полем. Для измерения в условиях интенсивных помех, сопровождающих импульсные токи килоамперного диапазона, используется акустический волновод с гальванической развязкой датчика давления диэлектрической жидкой средой.

Импульсное магнитное поле, датчик пьезоэлектрический, жидкий металл, измерение импульсных давлений.

При воздействии импульсным магнитным полем (ИМП) на жидкий металл (ЖМ) толще материала возникает В давление. Это импульсное приводит к перемешиванию расплава и качественному изменению структуры. ИМП формируется при магнитно-импульсной установки разряде (МИУ) на технологический индуктор. ИМП обрабатываемом наводит в материале импульсные токи амплитудой 30...100 кА длительностью 100...1000 мксек, которые являются источником интенсивных электромагнитных помех при измерениях.

исследовании технологических При ЖМ процессов обработки необходимо определять распределение величину И импульсного давления по сечению расплава. Традиционные методы измерения параметров импульсного давления не могут использоваться из-за наличия следующих факторов:

- высокая температура в зоне измерения (до 700...900 °C);

- опасность появления высоковольтного потенциала на датчике в момент разряда МИУ;

- однократный и быстропротекающий характер воздействия,

- низкая помехозащищенность от электрических помех из-за наличия гальванической или емкостной связи датчика с измеряемой средой.

Пьезоэлектрические преобразователи давления, в отличие от тензометрических, индукционных и других, обладают высокой

чувствительностью и быстродействием до 200 кГц, минимальной зависимостью от температуры. Поэтому для измерения импульсных давлений условиях в воздействия ИМП на объект исследования использован пьезоэлектрический преобразователь. Основной задачей являлось создание методики измерения импульсного давления в среде с высокой температурой и обладающей высокой помехоустойчивостью.

импульсного Датчики давления, выпускаемые серийно, как правило, содержат корпус с мембраной, на которую опирается пьезоэлектрический элемент через фиксирующий состав. Для снижения температурной погрешности фиксирующий состав служит дополнительной теплоизоляцией пьезоэлемента. Недостатком латчика являются низкая собственная частота, определяемая наличием передаточной мембраны И фиксирующего виброгасящего состава пьезоэлементом между И элементами датчика, передающими импульс давления, относительно также большая а теплопроводность между корпусом И пьезоэлементом, что делает невозможным использование датчика при температурах измеряемой среды свыше 100 C^0 .

Измерительная система содержит приемный акустический волновод, акустически связанный с датчиком давления через диэлектрическую несжимаемую жидкость, помещенную в

специальную камеру И практически не имеющую гальванической или емкостной связи с объектом измерения. Наличие камеры, заполненной жидкостью, позволяет повысить помехоустойчивость датчика, обеспечить развязку измерительных цепей датчика от объекта измерения и не допустить перегрев счет уменьшения датчика за теплопроводности через охлаждаемую передаточную жидкость в камере [1].

На рисунке 1 представлена схема измерения импульсных давлений в ЖМ. Измерительная система содержит приемный акустический волновод 4, который свободным концом входит в камеру 2, заполненную диэлектрической несжимаемой жидкостью 3. Датчик давления 1 расположен на противоположном конце камеры. Вводы волновода и чувствительного элемента в герметизируются камеру эластичными виброгасящими кольцами.

Рис. 1. Схема измерения импульсного давления в жидком металле

Импульс давления, возникающий в среде жидкого металла 5 при разряде МИУ на индуктор 6, вызывает появление в волноводе 4 упругой волны, которая проходит по волноводу в камеру 2. Волна давления передается через диэлектрическую несжимаемую жидкость 3, например керосин, воздействует на датчик лавления. И Чувствительный элемент датчика 1 может быть выполнен в виде гидрофона, например, иметь форму пьезокерамической полой сферы с электродами на внутренней и наружной поверхности или форму плоской таблетки, ориентированной к фронту ударной волны в камере.

Для уменьшения электрических помех камера выполнена из диэлектрического материала, например, прозрачного пластика или керамики.

Охлаждение передаточной жидкости в камере может осуществляться за счет конвекции принудительного или охлаждения внешним хладагентом. Жидкая передаточная среда позволяет устранить акустические шумы, возникающие на границе контактного соединения датчика и волновода, характерные для стержневых обеспечивает систем. И равномерную нагрузку фронта давления на чувствительный элемент датчика давления.

Сигналы датчика давления P(t) регистрируются цифровым запоминающим осциллографом одновременно с разрядным током I(t) МИУ бесконтактным датчиком импульсного тока 7.

На рисунке 2 показана осциллограмма тока разряда МИУ в индукторе (верхний луч) и импульса давления (нижний луч).

Рис. 2. Осциллограммы разрядного тока МИУ и импульса давления в среде жидкого металла

Задержка сигнала датчика давления Т1+Т2+Т3 относительно разрядного тока МИУ обусловлена временами прохождения импульса толщу ЖМ через _ L3. акустического волновода L2 _ и промежутка жидкости в камере - L1 (рис. 1, 2).

Измерения проводились при ИМП обработке расплава жидкого алюминия при температуре +780...700 °C импульсами с запасаемой энергией 500 Дж. ЩУП диаметром Волноводный 8 мм располагался на различной глубине ЖМ 20...100 мм от индуктора. Амплитуда импульса давления составила 1,4...1,3 МПа чувствительности измерительной при

системы: волновод – камера – пьезодатчик – 0,43 мВ/бар.

Основной трудностью при измерении давлений импульсных является необходимость достоверной калибровки в динамических режимах И установление измерительной временных характеристик системы. Динамическая калибровка датчиков обычно осуществляется давления баллистическим методом или с помощью хорошо сформированных ударных волн. Для этого, как правило, применяют ударные трубы диафрагмой, позволяющие с разрывной получать прямоугольный фронт давления. Однако практическая реализация данной методики калибровки довольно сложна.

Наиболее простая методика калибровки датчиков давления в динамическом режиме может проводиться на установках с использованием падающего груза или копра [2].

В установках подобного типа импульс давления формируется при падении груза с заданной высоты на неуплотненный поршень, опирающийся на жидкость, заключенную в рабочую камеру. В камере устанавливаются поверяемый и образцовый датчики давления. Сличение выходных сигналов датчиков позволяет получить информацию о динамических характеристиках калибруемого датчика.

Схема установки с падающим грузом приведена на рисунке 3.

При калибровке необходимо обеспечить формирование импульсов давления амплитудой и временем нарастания рм переднего фронта $\tau_{пф}$, изменяющимися в измерений. заданном диапазоне Это лостигается соответствующим выбором максимальной и минимальной массы падающего груза m, высоты падения h, объема рабочей камеры V и модуля упругости В применяемой жидкости.

В момент удара жидкость можно рассматривать как гидравлическую пружину с жесткостью. В жидкости образуется серия импульсов давления в форме полуволн синусоиды, количество которых равно числу отскоков груза.

Рис. 3. Схема калибровки с падающим грузом 1- падающий груз 2 – поршень 3 – жидкость 4, 5 – калибруемый и образцовый датчики давления

Если принять, что жидкостное трение поршня отсутствует и масса поршня мала по сравнению с массой груза, то расчетные значения давления и времени нарастания будут равны [2]:

$$p_{\rm m} = 1.52 \sqrt{\frac{B \cdot g \cdot m \cdot h}{V}},$$
$$\tau_{\rm n\varphi} = \frac{1.17}{F} \sqrt{\frac{V \cdot m}{B}},$$

где В – адиабатический модуль упругости жидкости.

Параметры установки для калибровки:

- площадь камеры, $F = 2 \text{ см}^2$;
- объем камеры, $V = 10 \text{ см}^3$;
- жидкость керосин, В = 1300 МПа.

При калибровке падающим грузом с высоты 400мм получены импульсы давления $P_{\text{мах}} = 10$ МПа с фронтом нарастания $\tau_{n\varphi} = 230$ мксек:

- коэффициент преобразования пьезодатчика ЖКМ-1 без акустического волновода, S = 3,1 мВ/МПа;

- с волноводом Ø4,5х500 мм, S= 0,1 мВ/МПа;

- с волноводом Ø8х500 мм, S= 0,43 мВ/МПа.

Для исследования амплитудночастотной характеристики датчика импульсного давления использовалась оригинальная методика калибровки на магнитно-импульсном стенле. Такая обеспечивает методика повышение стабильности и точности калибровки и упрощение аппаратурной реализации. Схема стенда показана на рисунке 4.

Устройство содержит емкостный накопитель энергии 1, который разряжается через разрядник 2 на индуктор 3. На активной плоскости спирального индуктора неподвижно закреплен акустический волновод 4, который узкой цилиндрической частью входит в камеру 5. Камера заполнена несжимаемой диэлектрической жидкостью 6. противоположном конце Ha камеры расположен калибруемый датчик 7. Вводы волновода и датчика давления в камеру герметизируются эластичными кольцами 8, не передающими акустические колебания на стенки камеры.

Для выравнивания профиля импульса давления длина L заполненной жидкостью камеры должна быть больше диаметра $D_{\text{вн}}$ внутренней полости: $L \ge (5...10) D_{\text{вн}}$.

Датчик давления гальванически развязан индуктора волновода столбом ОТ И диэлектрической несжимаемой жидкости (например, керосином), что исключает искажение сигнала импульсных от электромагнитных помех, возникающих в момент разряда накопителя энергии.

Изменяя параметры разрядного контура накопителя энергии, можно формировать импульсы давления различной амплитуды и длительности с высокой точностью. В соответствии с известными выражениями параметры импульса давления зависят от емкости накопителя энергии и напряжения заряда.

Максимальная амплитуда давления Р_{max} зависит от напряжения заряда U₀ при неизменных параметрах системы «индуктор – волновод»:

$$P_{\max} = k \cdot \frac{C \cdot U_0^2}{2S},$$

где k – коэффициент связи индукторволновод, S – эффективная площадь индуктора, C – емкость накопителя энергии.

Коэффициент k определяется расчетным путем или экспериментально при первичной калибровке устройства по образцовому датчику давления.

Длительность импульса давления t зависит от параметров разрядного контура: C_0 - емкости накопителя энергии или общей индуктивности накопителя L_0 и индуктора L_c :

$$t = 4\pi \sqrt{\left(L_0 + L_i\right) \cdot C}.$$

Устройство для динамической калибровки датчиков давления работает следующим образом.

Накопитель энергии 1 заряжается до требуемого уровня энергии. После этого емкостный накопитель разряжается на индуктор 3. Протекающий в индукторе импульсный ток создает магнитное поле, которое наводит В основании акустического волновода 4 вихревые токи. результате электродинамического В взаимодействия магнитного поля индуктора и вихревых токов формируется импульс давления в волноводе.

Так как волновод жестко закреплен на индукторе, импульс давления, то распространяясь волноводу, по концентрируется противоположном на конце волновода и попадает в камеру 5. Через столб несжимаемой жидкости 6 импульс давления поступает на датчик 7. уплотнительные кольца 8 Эластичные герметизируют объем камеры и устраняют внутренние отражения от стенок камеры. По мере прохождения импульса давления в камере происходит выравнивание фронта чувствительный волны и на элемент датчика давления поступает плоская волна, равномерно распределенная по всей поверхности.

Калибровка производиться может экспериментально-расчетным методом или сличением показаний по образцовому датчику давления. Точность калибровки стабильностью обеспечивается высокой формирования импульсов давления при разряде емкостного накопителя энергии на параметрами индуктор И неизменными акустический передающей среды системы: «волновод камера» с несжимаемой жидкостью.

На рисунке 5 показан внешний вид стенда.

Рис. 5. Узел рабочей камеры магнитно - импульсного стенда для калибровки датчиков давления

Магнитно-импульсный стенд был апробирован калибровки лля пьезоэлектрических датчиков давления В составе емкостного накопителя с запасаемой энергией 3 кДж В диапазоне частоты разрядного тока 5...20 кГц. Стабильность амплитудных и временных параметров импульсов давления составила не менее 2%.

Применение волноводного датчика импульсного давления приводит к повышению помехоустойчивости И области температурного лиапазона В Датчик применения. может быть использован для регистрации импульсных давлений быстропротекающих процессов в магнитно-импульсной технологии обработки материалов И исследовании электрических разрядов в жидкости при электрогидравлической обработке материалов.

Описанная методика может быть использована для измерения как однократных импульсов, так пульсаций давления амплитудой до 1000 МПа в жидких и газообразных высокотемпературных средах, например, в гидросистеме летательного аппарата.

Библиографический список

1 Патент 108615 РФ, МПК G01L9/08. Высокотемпературный датчик импульсных давлений [Текст]/ Попов А.П., Юсупов Р.Ю., заявитель и патентообладатель СГАУ – 2011116721/28; заявл. 27.04.11; опубл. 20.09.11, Бюл. № 26.

2 Ястребцов, О.В. Упрощенная методика расчета параметров импульсов давления для установок с падающим грузом [Текст] / О.В. Ястребцов // Измерительная техника. – 1976, №7. – С. 37-38.

MEASUREMENTS OF PULSE PRESSURES WITHIN THE VOLUME OF A MELT IN TERMS OF INTENSE IMPULSE INTERFERENCES

© 2012 R. Yu. Yusupov, E. E. Kostryukov

Samara State Aerospace University named after Academician S.P. Korolyov (National Research University)

A procedure for measurements of pressure in a metal melt under the action of the pulse-magnetic field is presented. For measurements in terms of intense interferences, attendant on pulse currents of the kilo-ampere range, an acoustic waveguide is used with the galvanic isolation of the pressure detector by liquid medium.

Pulse-magnetic field, piezo-electric sensor, molten metal, measurement of pulse pressure.

Информация об авторах

Юсупов Ринат Юнусович, научный сотрудник научно-исследовательской лаборатории «Прогрессивные технологические процессы пластического деформирования»,

Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет). Е-mail: <u>vvz@ssau.ru</u>. Область научных интересов: магнитно-импульсная обработка материалов, силовая импульсная электроника.

Кострюков Евгений Евгениевич, старший лаборант научно-исследовательской лаборатории «Прогрессивные технологические процессы пластического деформирования», Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет). Е-mail: <u>vgl@ssau.ru</u>. Область научных интересов: медицинские диагностические приборы.

Yusupov Rinat Yunusovich, Research Officer of the "Advanced Technological Processes of Plastic Deforming" Research Laboratory, Samara State Aerospace University named after Academician S.P. Korolyov (National Research University). E-mail: <u>vvz@ssau.ru</u>. Area of research: pulse-magnetic processing of materials, Power Pulse Electronics.

Kostryukov Evgeniy Evgenyevich, senior laboratorian of the "Advanced Technological Processes of Plastic Deforming" Research Laboratory, Samara State Aerospace University named after Academician S.P. Korolyov (National Research University). E-mail: <u>eugen.kostr@gmail.com</u>. Area of research: medical diagnostic devices.