УДК 534.83+629.78

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ИССЛЕДОВАНИЯ НОРМАЛЬНЫХ АКУСТИЧЕСКИХ МОД ОТСЕКОВ РАКЕТЫ-НОСИТЕЛЯ

© 2012 П. А. Попов 1 , А. С. Белов 1 , А. Н. Крючков 2

¹ФГУП ГНПРКЦ «ЦСКБ-ПРОГРЕСС», г. Самара ²Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет)

Изложены метод, учитывающий влияние баков горючего и окислителя ракеты-носителя (PH) на распространение звука в межбаковом пространстве, пример нахождения резонансных акустических мод и частот отсека PH, анализ звукоизоляционных характеристик отсека.

Ракета-носитель, отсеки, акустическое давление, звукоизоляция, акустические и структурные моды, волновое уравнение, стоячая волна.

При проектировании изделий ракетно-космической техники (РКТ) одним из направлений работ инженеров является прогнозирование распространения акустических полей внутри отсеков ракетносителей, так как акустическое поле, создаваемое струями двигательной установки, структурным шумом и турбулентным аэродинамическим потоком, является источником вибрации конструкции РН и бортовой аппаратуры при старте и полёте. Характеристики акустического поля внутри замкнутых цилиндрических отсеков РН неразрывно связаны с определением звукоизоляции их панелей. При этом, как показано в работах [1,2], явление снижения звукоизоляционной способности панелей обусловлено появлением структурных и акустических резонансов и их взаимодействием.

Отсеки РН имеют форму кругового цилиндра. В настоящее время разработан ряд математических моделей распространения акустических полей внутри помещений правильной формы (цилиндр, шар, прямоугольный параллелепипед). В то же время эти модели не описывают полностью процесс распространения акустических мод отсека РН, так как в них не учтены сферические поверхности (баки горючего и (или) окислителя), которые существенно влияют на решение задачи. Целью данной работы является построе-

ние математической модели распространения акустических полей внутри отсека РН и анализ данных звукоизоляционных характеристик отсека на основе этой модели.

Пусть имеется цилиндрический отсек радиусом R и высотой H, ограниченный на основаниях сферическими поверхностями с радиусами кривизны δ , при этом минимальное расстояние между сферическими поверхностями равно $\Delta = H - 2(d - \sqrt{d^2 - R^2})$. Радиальные, продольные и окружные моды акустического давления \overline{P} в цилиндрическом отсеке описываются волновым уравнением в цилиндрической системе координат (r,j,z):

$$\begin{split} \frac{\partial^2 \overline{P}}{\partial r^2} + \frac{1}{r} \frac{\partial \overline{P}}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \overline{P}}{\partial \boldsymbol{j}^2} + \frac{\partial^2 \overline{P}}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \overline{P}}{\partial t^2} = 0, \\ \text{где } c - \text{скорость звука в среде, м/c.} \end{split}$$

Из данного соотношения, используя подстановку $\overline{P}(r,j,z,t) = P(r,j,z)e^{iwt}$, получим уравнение Гельмгольца:

$$\frac{\partial^2 P}{\partial r^2} + \frac{1}{r} \frac{\partial P}{\partial r} + \frac{1}{r^2} \frac{\partial^2 P}{\partial j^2} + \frac{\partial^2 P}{\partial z^2} + I^2 P = 0, \quad (1)$$
 где $I = \frac{W}{c}$ - волновое число, рад /м;

w-круговая частота, рад· Γ ц.

Граничные условия для (1) выбираются следующим образом:

- на краях цилиндра и на сферических поверхностях производные по направлениям r и z от амплитуды акустических волн равны нулю;
- окружные моды внутри отсека повторяются с периодичностью 2p;
- на центральной линии отсека решение не является бесконечным.

Граничные условия для криволинейных границ днищ баков получены из геометрии, изображённой на рис. 1.

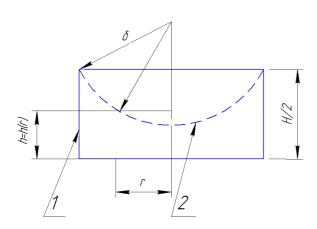


Рис.1. Вспомогательная геометрия половины отсека РН: 1 - каркас отсека РН; 2 – днище бака РН

Граничные условия имеют вид:

$$\frac{\partial P}{\partial r}(r = R, j, z) = 0,$$

$$\frac{\partial P}{\partial z}(r, j, z = \pm h) = 0,$$

$$P(r, j, z) = P(r, j + 2p, z),$$

$$P(r = 0, j, z) < \infty,$$
где $h = \frac{\Delta}{2} + d - \sqrt{d^2 - R^2}$.

Задача решается методом разделения переменных:

$$P(r, j, z, t) = R(r)\Phi(j)Z(z)T(t).$$
 (3)

Подставим (3) в (1) и поделим получившееся на (3):

$$\frac{\frac{d^{2}R(r)}{dr^{2}} + \frac{1}{r}\frac{dR(r)}{dr}}{R(r)} + \frac{\frac{1}{r^{2}}\frac{d^{2}\Phi(j)}{dj^{2}}}{\Phi(j)} + \frac{\frac{d^{2}Z(z)}{dz^{2}}}{Z(z)} + I^{2} = 0.$$
(4)

Выражение (4) выполняется, когда

$$\frac{\frac{d^{2}R(r)}{dr^{2}} + \frac{1}{r}\frac{dR(r)}{dr}}{R(r)} + \frac{\frac{1}{r^{2}}\frac{d^{2}\Phi(j)}{dj^{2}}}{\Phi(j)} = -m^{2}, \quad (5)$$

$$\frac{d^2Z(z)}{\frac{dz^2}{Z(z)}} = -\mathbf{h}^2,$$

$$(I^2 = \mathbf{m}^2 + \mathbf{h}^2).$$

Первое из уравнений (5) умножим на r^2 и после преобразования получим

$$\frac{r^2 \frac{d^2 R(r)}{dr^2} + r \frac{dR(r)}{dr}}{R(r)} + m^2 r^2 + \frac{\frac{d^2 \Phi(j)}{dj^2}}{\Phi(j)} = 0. (6)$$

Выражение (6) выполняется, когда

$$\frac{r^{2} \frac{d^{2}R(r)}{dr^{2}} + r \frac{dR(r)}{dr}}{R(r)} + m^{2}r^{2} = a^{2},$$

$$\frac{d^{2}\Phi(j)}{dj^{2}} = -a^{2}.$$
(7)

Второе из уравнений (7) описывает окружные моды внутри отсека. Рассмотрим следующую задачу нахождения собственных чисел a_i (задача Штурма-Лиувилля):

$$\frac{d^2\Phi(j)}{dj^2} + a^2\Phi(j) = 0,$$

$$\Phi(j) = \Phi(j+2p).$$
(8)

Из (8) окружные моды примут вид

$$\Phi_{i}(j) = A_{i} \cos(a_{i}j) + B_{i} \sin(a_{i}j),
(a_{i} = i \in \mathbb{Z}).$$
(9)

Первое из выражений (7) является уравнением Бесселя, из (9) можно сделать вывод, что его порядок - целое число. Решения представляют собой сумму двух линейно независимых функции Бесселя и Неймана:

$$R_i(r) = C_i I_i(\mathbf{m} \cdot r) + D_i Y_i(\mathbf{m} \cdot r),$$

где $I_i(\mathbf{m} \cdot \mathbf{r})$ - функция Бесселя i - го порядка;

 $Y_i(\mathbf{m} \cdot r)$ - функция Неймана i - го порядка.

Известно, что функции Неймана сингулярны в нуле, поэтому в соответствии с последним из условий (2) можно сделать вывод, что радиальные моды будут представлены лишь функциями Бесселя:

$$R_i(r) = C_i I_i(\mathbf{m}_i^k r), \qquad (10)$$

где k - номер корня функции Бесселя порядка i.

Исходя из первого из условий (2), найдём собственные числа \mathbf{m}_i^k (их перечень и резонансные частоты, соответствующие радиальным модам, представлены в табл. 1: 1 - порядок i функции $I_i(\mathbf{m}_i^k R)$; 2 - номер корня, k; 3 - корень, $\mathbf{m}_i^k R$; 4 - радиальная резонансная частота отсека, $f_{pes}^i = \frac{\mathbf{m}_i^k c}{2 \mathbf{n} R}$, Γ ц).

Были рассмотрены радиальные и круговые моды акустического поля. Для дальнейшего анализа рассмотрим продольные моды и найдём акустические резонансы. Для этого воспользуемся вторым уравнением из (5) с граничными условиями вида

$$\frac{\partial Z}{\partial z}(z = \pm(\frac{\Delta}{2} + d - \sqrt{d^2 - r^2})) = 0. \tag{11}$$

Таблица 1. Перечень собственных чисел и соответствующих им резонансных частот

	1	ı	ı
1	2	3	4
0	1	3,84	152,4
	2	7,01	278,2
	3	10,18	404,0
			,
	4	13,3	527,9
	5	16,48	654,1
	6	19,61	778,3
	7	22,77	903,7
1	1	1,8	71,4
	2	5,33	211,5
	3	8,53	338,5
	4		464,4
	4	11,7	
	5	14,86	589,8
	6	18,02	715,2
	7	21,16	839,8
2	1	3,05	121,1
_	2	6,7	265,9
	3	9,96	395,3
	4	13,17	522,7
	5	16,34	648,5
	6 	19,51 	774,1
3	1	4,2	166,7
	2	8,01	317,9
	3	11,34	450,1
	4	14,58	578,7
	5	17,78	705,7
	6	20.97	166,7
		5,31	
4	1	5,31	210,7
	2	9,28	368,3
	3	12,68	503,3
	4	15,96	633,4
	5	19,19	761,6
5	1	6,41	254,4
)	1		
	1	7,5	207.7
6			297,7
7	1	8,57	340,1
8	1	9,64	382,6
0	1	2,04	302,0
			•••••
9	1	10,71	425,1
	•••••		•••••

Условие (11) даст:

$$-F_{j}h_{j}\sin(h_{j}(\frac{\Delta}{2}+d-\sqrt{d^{2}-r^{2}})) + +E_{j}h_{j}\cos(h_{j}(\frac{\Delta}{2}+d-\sqrt{d^{2}-r^{2}})) = 0,$$

$$F_{j}h_{j}\sin(h_{j}(\frac{\Delta}{2}+d-\sqrt{d^{2}-r^{2}})) + +E_{j}h_{j}\cos(h_{j}(\frac{\Delta}{2}+d-\sqrt{d^{2}-r^{2}})) = 0.$$
(12)

Как известно, уравнение (12) имеет решение при условии:

$$\begin{split} \det(-\eta_{j}\sin(\eta_{j}(\frac{\Delta}{2}+\delta-\sqrt{\delta^{2}-r^{2}}))_{11}, \\ \eta_{j}\cos(\eta_{j}(\frac{\Delta}{2}+\delta-\sqrt{\delta^{2}-r^{2}}))_{12}, \\ \eta_{j}\sin(\eta_{j}(\frac{\Delta}{2}+\delta-\sqrt{\delta^{2}-r^{2}}))_{21}, \\ \eta_{j}\cos(\eta_{j}(\frac{\Delta}{2}+\delta-\sqrt{\delta^{2}-r^{2}}))_{22} &= 0. \end{split} \tag{13}$$

Уравнение (13) преобразуется к виду

$$\sin(2h_j(\frac{\Delta}{2} + d - \sqrt{d^2 - r^2})) = 0. \tag{14}$$

Имеется набор собственных чисел, полученных из (14):

$$h_{j} = \frac{p \cdot j}{\Delta + 2(d - \sqrt{d^{2} - r^{2}})}.$$
 (15)

Продольные моды имеют вид

$$Z_{j}(z) = F_{j} \cos(\frac{p \cdot j}{\Delta + 2(d - \sqrt{d^{2} - r^{2}})}z) + E_{j} \sin(\frac{p \cdot j}{\Delta + 2(d - \sqrt{d^{2} - r^{2}})}z).$$
(16)

Из (16) следует, что вдоль центральной линии (r=0), между днищами баков межбакового отсека имеется семейство стоячих (продольных) волн:

$$Z_j(z) = F_j \cos(\frac{p \cdot j}{\Delta}z) + E_j \sin(\frac{p \cdot j}{\Delta}z)$$
.

Найдём величину I_{ii}^k :

$$I_{ij}^{k^2} = m_i^{k^2} + (\frac{p \cdot j}{\Delta + 2(d - \sqrt{d^2 - r^2})})^2, \quad (17)$$

 m_i^k - находится из табл. 1.

Подставим в (4) выражения (10), (11), (16):

$$P_{ij}^{k} = I_{i}(\mathbf{m}_{i}^{k}r)(A_{ij}^{k}\cos(\mathbf{j}) + B_{ij}^{k}\sin(\mathbf{j}))(F_{j}\cos(\frac{\mathbf{p}\cdot\mathbf{j}}{\Delta + 2(\mathbf{d} - \sqrt{\mathbf{d}^{2} - r^{2}})}z) + E_{j}\sin(\frac{\mathbf{p}\cdot\mathbf{j}}{\Delta + 2(\mathbf{d} - \sqrt{\mathbf{d}^{2} - r^{2}})}z)).$$

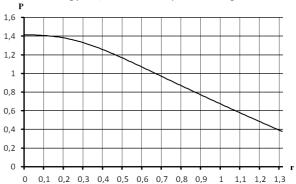
$$(18)$$

На рис. 2-4 показаны радиальные акустические моды, возникающие в межбаковом пространстве на частоте 71,4 Γ ц, на различных высотах от срединной плоскости между баками (H=0 м) до высоты

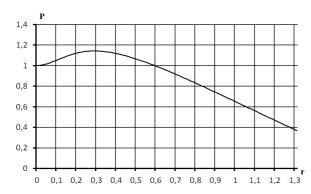
$$H = \frac{\Delta}{2}$$
 (днище бака).

Рис. 2. Акустическая мода, распространяющаяся по срединной плоскости отсека,

H=0 м (функция Бесселя нулевого порядка)



Puc. 3. Акустическая мода, $pаспространяющаяся \ \mbox{\it на высоте} \ \ H = \frac{\Delta}{4}$



Как видно из рис. 2, вдоль центральной плоскости цилиндрического отсека со сферическими поверхностями на основаниях распространение акустических волн происходит аналогично цилиндру с плоскими основаниями. Однако при изменении высоты △ влиянием баков горючего и окислителя РН пренебречь нельзя (см. рис. 3,4) и необходимо использовать модель, предложенную в данной статье.

Для дальнейшего анализа найдём структурные резонансы обечайки отсека PH. Уравнение динамики при малых смещениях точек тел имеет следующий вид:

$$[M] \times \overline{\mathbb{R}} + [B] \times \overline{\mathbb{R}} + [K] \times \overline{u} = \overline{F}(t),$$
 (19) где $[M]$ - матрица масс;

28- вектор ускорений в узловых точках;

[В] - матрица демпфирования;

№ - вектор скоростей в узловых точках;

[К] - матрица жёсткости структуры;

и - вектор перемещений узлов;

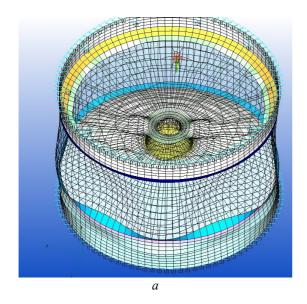
F(t) - вектор узловых сил как функция времени.

Принимая равными нулю воздействующие силы, уравнение (19) преобразуем к виду

$$[M] \times \overline{\mathbf{R}} + [B] \times \overline{\mathbf{R}} + [K] \times \overline{\mathbf{u}} = 0. \tag{20}$$

Решение уравнения (20) показало, что собственные оболочечные колебания обечайки отсека РН на первом тоне составляют 270 Гц. Форма колебания представлена на рис. 5.

Десять оболочечных тонов представлены в табл. 2.



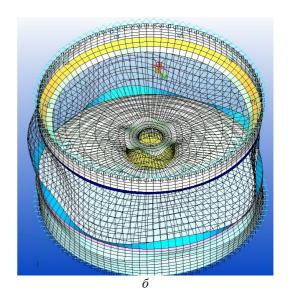


Рис. 5. Формы собственных колебаний каркаса отсека на частотах: а - 270 Гц; б - 273 Гц

Таблица 2. Оболочечные тона

Номер тона	1	2	3	4	5	6	7	8	9	10
Собственная частота, Гц	270	273	283	287	289,5	294,5	322	349	357	370

Как отмечалось ранее, звукоизоляционные характеристики зависят от распределения акустических и структурных резонансов внутри отсека и на его поверхности. Выше такие распределения были получены. Эти данные могут объяснить падения звукоизоляции при пусках РН типа "Союз" в области частот 160-600 Гц. Действительно, как показано в табл.1, акустические резонансы начинаются с 71,4 Гц, а основная их доля попадает в области частот 1/3-октавного спектра с центральными частотами 160, 200, 250, 315, 625 Гц. Оболочечные резонансы (табл. 2, рис. 6) начинаются с 270 Гц. С учётом их высокой плотности следует вывод, что могут возникать на частотной оси поддиапазоны, в которых структурные резонансы совпадают с акустическими резонансами, а основные минимумы звукоизоляции попадают в 1/3 октавные полосы частот с центральными частотами 160. 250, 315, 625 Гц.

В табл. 3 показаны соотношения между акустическими и структурными резонансами и центральные частоты в 1/3-октавном спектре, на которых наблюдается падение звукоизоляционных характеристик панели отсека (рис. 6): 1 - структурные резонансы подкреплённой обо-

лочки отсека, f_{pe3} , Γ ц; 2 - радиальная акустическая частота отсека, f_{pe3} , Γ ц; 3 - продольная акустическая частота (между полусферами днищ баков), f_{pe3} , Γ ц; 4 - места "провалов" в звукоизоляционном спектре, $f_{\frac{1}{2}}$ окум, f ц.

Таблица 3. Соотношения между акустическими и структурными резонансами и частотами, на которых наблюдается падение коэффициента звукоизоляции панели

1	2	3	4
	71,44 121,1 152,4 166,7		160
270 273 287	210,7 254		200 250
289 322	297,7 340,1 382,6 425,1		315
		637,5	625

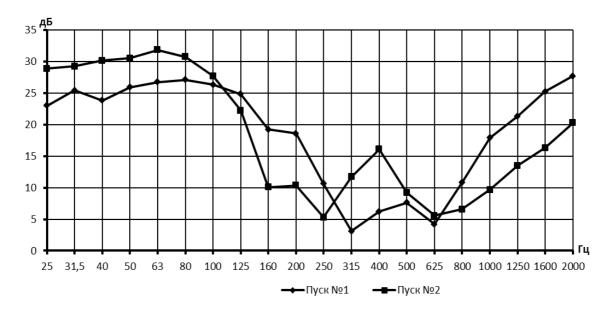


Рис. 6. Перепад звукового давления через обечайку отсека во время полёта PH при различных пусках

Таким образом, разработана математическая модель распространения акустических мод внутри замкнутого отсека, ограниченного двумя сферическими поверхностями. Исследованы акустические и упругие резонансные частоты, значения которых представлены в табл. 1, 2. Проведённый анализ объясняет снижение звукоизоляционных способностей отсека в 1/3-октавных полосах частот с центральными частотами 160, 250, 315, 625 Гц.

Полученная математическая модель полезна при прогнозировании акустического нагружения аппаратуры и конструкции РН с большими диаметрами отсеков (например, РН "Союз-2-3-в") и может быть модифицирована для случаев распространения акустических полей между

плоскими панелями космических аппаратов, между головным блоком и полезной нагрузкой с плоскими и цилиндрическими панелями.

Библиографический список

- 1. Исследования по повышению звукоизоляции самолетных конструкций (по материалам открытой зарубежной печати) [Текст]. ЦАГИ, 1990. 101 с.
- 2. Экспериментальное определение звукоизоляции межбакового отсека блока III ступени РН "Союз" [Текст] / НТО, инв.№5535. ЦАГИ, 1999. 38 с.
- 3. Владимиров, В. С. Уравнения математической физики [Текст] / В. С. Владимиров М.: Наука, 1976. 392 с.

MATHEMATICAL MODEL OF INVESTIGATING NORMAL ACOUSTIC MODES OF LAUNCH VEHICLE MODULES

© 2012 P. A. Popov¹, A. S. Belov¹, A. N. Kryuchkov²

¹State Research and Production Space Rocket Center «TsSKB-Progress»
²Samara State Aerospace University named after academician S. P. Korolyov (National Research University)

The article presents a method which considers the influence of fuel and oxidizer tanks of a launch vehicle on sound propagation in the inter-tank space. An example of finding resonant acoustic modes and frequencies of a launch vehicle module and the analysis of sound-insulation characteristics of the module are also given.

Launch vehicle, rocket modules, acoustic pressure, sound insulation, acoustic and structural modes, wave equation, standing wave.

Информация об авторах

Попов Павел Александрович, начальник группы, ФГУП ГНПРКЦ «ЦСКБ-ПРОГРЕСС». E-mail: banduir@rambler.ru. Область научных интересов: звукоизоляция и акустические нагрузки.

Белов Анатолий Сергеевич, инженер-конструктор, ФГУП ГНПРКЦ «ЦСКБ-ПРОГРЕСС». E-mail: <u>AnatoliyBelov@Gmail.com</u>. Область научных интересов: исследование нагружения оборудования КА и РН от вибрационных и акустических воздействий.

Крючков Александр Николаевич, доктор технических наук, профессор кафедры автоматических систем энергетических установок, Самарский государственный аэрокосмический университет имени академика С. П. Королёва (национальный исследовательский университет). E-mail: kan@ssau.ru. Область научных интересов: виброакустика и динамика машин.

Popov Pavel Aleksandrovich, chief of group, Space Rocket Center «TsSKB-Progress». E-mail: banduir@rambler.ru. Area of research: sound insulation and acoustic loads.

Belov Anatoly Sergeevich, design engineer, Space Rocket Center «TsSKB-Progress». E-mail: AnatoliyBelov@Gmail.com. Area of research: space vehicle and launch vehicle equipment loading caused by vibration and acoustic influence.

Kryuchkov Alexander Nikolaevich, doctor of technical science, professor, the department of automatic systems of power installations, Samara State Space University named after academician S. P. Korolyov (National Research University). E-mail: kan@ssau.ru. Area of research: vibration of acoustics and dynamics of machines.