УДК 621.452.32

ИССЛЕДОВАНИЕ ГЕРМЕТИЧНОСТИ РАДИАЛЬНО-ТОРЦОВОГО КОНТАКТНОГО УПЛОТНЕНИЯ ОПОРЫ КОМПРЕССОРА АВИАЦИОННОГО ДВИГАТЕЛЯ НА РАЗЛИЧНЫХ РЕЖИМАХ РАБОТЫ

© 2012 А.С. Виноградов, Р.Р. Бадыков, И.Д. Шпаков

Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет)

В статье приводится последовательность определения утечек через радиально-торцовое уплотнение опоры компрессора для взлётного и крейсерского режимов. Определённые расчётные значения герметичности (2,4 г/с на взлётном режиме и 0,75 г/с на крейсерском) согласуются с имеющимся опытом проектирования уплотнений.

Опора компрессора, уплотнение опоры, нагрузки на элементы опоры, деформация элементов опоры, утечки через уплотнения.

Создание конечно-элементной модели опоры

Уплотнения опоры авиационного двигателя во многом определяют надёжную работу подшипника опоры и её тепловое состояние [1, 2].

Было исследовано межвальное радиально-торцовое контактное уплотнение (РТКУ) опоры компрессора двигателя НК-32. Конструкция опоры с уплотнением показана на рис. 1. Передняя стенка опоры омывается воздухом из-за восьмой ступени компрессора, этот же воздух используется для наддува переднего РТКУ опоры и межвального РТКУ. Заднее РТКУ наддувается воздухом из-за десятой ступени.

Геометрическая модель межвального РТКУ представлена на рис. 1.

Рис. 1. Геометрическая модель межвального РТКУ

Приведённые на рис. 1 значения использовались при создании расчётных моделей для определения величин деформаций и расхода через уплотнение. Для этого были проведены термогазодинамический и гидравлический расчёты двигателя на максимальном (*H*=0, *M*=0) и крейсерском (*H*=11, *M*=0,8) режимах. Определены осевая и радиальные силы, тепловыделение в подшипниках и исследуемом РТКУ. На основании геометрической модели для выполнения последующих теплового и структурного расчётов была создана плоская осесимметричная конечно-элементная модель (16657 элементов).

Тепловой расчёт

Для оценки перемещений и деформаций деталей узла межвального уплотнения по модели были выполнены следующие расчёты с приложением соответствующих ранее определенных нагрузок.

1. Температурный анализ (исходными данными являются температура граничного воздуха и коэффициент конвективной теплоотдачи, а также тепловые потоки, выделяющиеся с поверхностей межвального уплотнения и за счёт трения в подшипниках) [2 - 5].

2. Структурный анализ (исходными данными являются граничные давления, осевая сила, результаты температурного анализа).

3. Расчёт и анализ результатов распределения температуры в модели.

4. Структурный расчёт и анализ результатов полученных деформаций деталей опоры и уплотнительного узла. В результате выполнения расчётов получены распределения температуры на двух режимах: крейсерском и взлётном. Максимальные значения температуры составили: 248 °C для крейсерского режима и 599 °C для взлётного. На крейсерском режиме уплотнительное кольцо прогревается более равномерно. Разница между максимальной и минимальной температурой кольца составляет 34 градуса. На взлётном режиме разница между температурой торцов кольца более резкая и составляет 77 градусов, т.е. более чем в два раза больше по сравнению с крейсерским режимом.

Структурный расчёт

После получения расчётного распределения температуры и анализа результатов были выполнены структурные расчёты для исследуемых режимов. Результаты расчётов показаны на рис. 2 и 3.

Рис. 2. Суммарные деформации в уплотнении на крейсерском режиму

Рис.3. Смещение кольца относительно положения покоя на взлётном режиме

Максимальная деформация на крейсерском режиме наблюдается в верхней крышке уплотнения. Наибольший интерес представляют деформации уплотнительного кольца. Линейные и угловые деформации, соответствующие крейсерскому режиму, показаны на рис. 2. Анализ рисунка показывает, что кольцо смещается вправо на 0,13 мм и вверх на 0,17 мм относительно своего первоначального положения. Угловые деформации составили следующие значения: около 6' для торцовой поверхности и столько же для радиальной. В целом можно заключить, что угловая деформация поверхностей незначительна и оба уплотнительных зазора сохраняют плоскопараллельную форму. Величина конусности составила 1,67 мкм.

Максимальная деформация для всей опоры на взлётном режиме составляет величину 2 мм, соответствует той же детали, что и на крейсерском режиме и объясняется теми же причинами. В уплотнительном узле (рис. 3) максимальная деформация также соответствует верхней крышке уплотнения и составляет величину 0,85 мм. Таким образом, величина максимальной деформации в деталях уплотнения увеличилась приблизительно на 110%, т.е. более чем в два раза. Анализируя рис. 3, можно заключить, что кольцо деформируется так же, как и на крейсерском режиме: сдвигается вправо на 0,3 мм и вверх на 0,17 мм. Осевая деформация увеличилась в 2,3 раза, в то время как радиальная осталась на прежнем уровне. Существенно увеличился угол поворота сечения. Он увеличился в 2,7 раза (с 6` до 16`). Повышенная конусность на взлётном режиме (4,72 мкм) может оказать влияние на работу газодинамических камер.

Проведённые исследования показали, что влияние давлений от потоков граничного воздуха на деформации незначительно по сравнению с тепловыми расширениями. Эта величина составляет ~ 1...3% и находится в пределах погрешности расчёта.

Определяющее влияние на величину деформации оказывает выделяющееся в результате трения контактирующих поверхностей тепло. Именно оно приводит к появлению радиальной деформации и полностью определяет её величину.

Наличие радиальных деформаций уплотнительного кольца и верхней крышки уплотнения приводит к изменению зазора в уплотнении и ухудшению его герметичности. Рис. 4 и 5 показывают изменение зазоров: щелевого (возникающего в месте разреза графитового кольца) и тангенциального, образующегося из-за различного теплового расширения уплотнительного кольца и верхней крышки уплотнения.

Рис. 4. Изменение зазоров (щелевого и тангенциального) на крейсерском режиме

Видно, что при переходе от взлётного режима к крейсерскому площадь тангенциального зазора уменьшается с $2,44 \text{ мм}^2$ до 2,3мм² (на 6%), площадь щелевого зазора также уменьшается с 15,97 мм² до 12,20 мм² (на 31%). Как видно, зазоры меняются непропорционально, что связано с преимущественным влиянием радиальной деформации верхней крышки уплотнения. Анализ изменения площадей зазоров однозначно показывает, что щелевой зазор оказывает решающее влияние на герметичность уплотнения. Для условий взлётного режима он составляет 87% суммарной площади, для крейсерского -85%. Естественно предположить, что утечки будут изменяться пропорционально величине зазора и утечки через тангенциальный зазор будут находиться на уровне 5 - 10% от их общего объёма. Поэтому для анализа герметичности уплотнения достаточно исследовать изменение расхода через щелевой зазор.

Рис. 5. Изменение зазоров (щелевого и тангенциального) на взлётном режиме

CFD - моделирование зазора

В этом расчёте использована тетраэдрическая сетка конечных элементов (~490000 элементов в каждой из моделей). На рис. 6 показано распределение динамического давления (давления скоростного напора) в воздушном канале. Максимальное давление находится в центре зазора и составляет 291 кПа.

По результатам расчёта определена величина утечек рабочего тела через зазор в кольце на крейсерском режиме. Она составила 0,0024 кг/с (погрешность расчёта: ±4,88·10⁻⁶ кг/с).

иоит оf Dynamic Pressure (pascal) Nov 18, 2012 АNSYS FLUENT 13.0 (3d, pins, ske) Рис. 6. Динамическое давление на крейсерском режиме

На рис. 7 показано распределение динамического давления (давления скоростного напора) в воздушном канале. Максимальное давление находится в центре зазора и составляет 75,8 кПа.

Рис. 7. Динамическое давление на взлётном режиме

По результатам расчёта определена величина утечек рабочего тела через зазор в кольце. Она составила 0,00075 кг/с (погрешность расчета: $\pm 5,11\cdot 10^{-6}$ кг/с). Таким образом, утечки на взлётном режиме в 3,2 раза превышают утечки на крейсерском (2,4 г/с и 0,75 г/с, соответственно).

Выводы

Проведенные расчётные исследования герметичности межвального РТКУ опоры компрессора двигателя НК на взлётном и крейсерском режимах позволяют сделать следующие основные выводы.

1. При переходе с взлётного на крейсерский режим характер деформации кольца не изменяется. Также сохраняется постоянной величина деформации кольца в радиальном направлении, которая составила 0,17 мм. В осевом направлении кольцо смещается на 0,3 мм на взлётном режиме и на 0,13 мм на крейсерском (смещение уменьшается в 2,3 раза). Угол поворота сечения также значительно изменяется (с 16` до 6`).

2. Наибольшее влияние на величину и форму уплотнительного зазора оказывает тепло, выделяющееся в зоне контакта. В торцовом зазоре тепла выделяется в два раза больше, чем в радиальном. Максимальное значение теплового потока в торцовом зазоре составляет 5147 Вт на взлётном режиме. Осевая сила оказывает влияние только на осевое смещение уплотнительного кольца. Оно изменяется с 0,135 мм до 0,029 мм (уменьшается в 4,7 раза) на крейсерском режиме и с 0,3 мм до 0,125 мм (уменьшается в 2,4 раза) на взлётном. Учёт давления приводит к изменению деформации на 1-3%.

3. Радиальная деформация деталей уплотнительного узла оказывает решающее влияние на изменение величины зазора в месте разреза кольца. При переходе от взлётного режима к крейсерскому площадь тангенциального зазора уменьшается с 2,4 мм² до 2,30 мм² (на 6%), площадь щелевого зазора также уменьшается с 15,97 мм² до 12,20 мм² (на 31%). Анализ изменения площадей зазоров показывает, что щелевой зазор оказывает решающее влияние на герметичность уплотнения. Для условий взлётного режима он составляет 87% суммарной площади, для крейсерского - 85%.

4. Расчёт утечек через щелевой зазор осуществлялся в CFD комплексе FLUENT. Расчётные значения утечек на взлётном режиме в 3,2 раза превышают утечки на крейсерском и составляют 2,4 г/с и 0,75 г/с соответственно, что согласуется с имеющимся опытом проектирования РТКУ.

5. Наличие значительного динамического давления на выходе из уплотнительного зазора (до 291 кПа на взлётном режиме и 75,8 кПа на крейсерском) должно учитываться при проектировании газодинамической разгрузки РТКУ.

Работа выполнена при финансовой поддержке Правительства Российской Федерации (Минобрнауки) на основании постановления Правительства РФ № 218 от 09.04.2010.

Библиографический список

1. Фалалеев, С.В. Торцовые бесконтактные уплотнения двигателей летательных аппаратов [Текст]: учебное издание / С.В. Фалалеев, Д.Е. Чегодаев. – Самара: СГАУ, 1998 – 275с.

2. Марцинковский, В.А. Вибронадежность и герметичность центробежных машин [Текст]: монография / под ред. В.А. Марцин-ковского, А.В. Загорулько. – Сумы: Сумский государственный университет, 2011. – 351 с.

3. Белоусов, А.И. Конструкция и проектирование уплотнений вращающихся валов турбомашин двигателей летательных аппаратов [Текст]: учебное пособие/ А.И. Белоусов, В.А. Зрелов – Самара: СГАУ, 1989. – 108с.

4. Решетов, Д.Н. Детали машин [Текст]: учебное пособие / Д.Н. Решетов. - М.: Машиностроение, 1989. - 496 с.

5. Михеев, М.А. Основы теплопередачи [Текст]: учебное пособие / М.А. Михеев, И.М. Михеева. М.: Энергия, 1977. -344 с.

RESEARCH OF RADIAL FACE CONTACT SEAL TIGHTNESS IN THE SUPPORT OF THE AIRCRAFT ENGINE COMPRESSOR AT VARIOUS OPERATIONAL MODES

© 2012 A. S. Vinogradov, R. R. Badykov, I. D. Shpakov

Samara State Aerospace University named after Academician S.P. Korolyov (National Research University)

In the article the sequence of leakage definition through radial face seal in a support of the compressor for takeoff and cruiser modes is resulted. Certain computational values of leakage (2,4 g/s on a take-off mode and 0,75 g/s on cruiser mode) coincide with available experience of seal designing.

Compressor support, support seal, loads on support elements, deformation of support elements, leakage.

Информация об авторах

Виноградов Александр Сергеевич, кандидат технических наук, доцент кафедры конструкции и проектирования двигателей летательных аппаратов, Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет). E-mail: <u>a.s.vinogradov@list.ru</u>. Область научных интересов: торцовые уплотнения, конструкция авиационных двигателей, надежность машин.

Бадыков Ренат Раисович, магистр, Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет). Е-mail: renatbadykov@gmail.com. Область научных интересов: конструкция авиационных двигателей.

Шпаков Иван Дмитриевич, магистр, Самарский государственный аэрокосмический университет имени академика С.П. Королёва (национальный исследовательский университет). E-mail: <u>shpakov_i.d@mail.ru</u>. Область научных интересов: конструкция авиационных двигателей.

Vinogradov Alexandr Sergeevich, candidate of technical science, associate Professor of department of construction and design of aircraft engines, Samara State Aerospace University named after Academician S.P. Korolyov (National Research University). E-mail: a.s.vinogradov@list.ru. Area of research: face seals, aircraft engine design, reliability of machines.

Badykov Renat Raisovich, second course master, Samara State Aerospace University named after Academician S.P. Korolyov (National Research University). E-mail: renatbadykov@gmail.com. Area of research: aircraft engine construction.

Shpakov Ivan Dmitrievich, second course master, Samara State Aerospace University named after Academician S.P. Korolyov (National Research University). E-mail: <u>shpakov_i.d@mail.ru</u>. Area of research: aircraft engine construction.