УДК 621.914.6.001.57

МОДЕЛЬ ОСНОВНОГО ЧЕРВЯКА ФРЕЗЫ ДЛЯ НАРЕЗАНИЯ ЗУБЧАТЫХ КОЛЕС

© 2012 С. П. Андросов¹, И. Г. Браилов², Д. В. Визигин¹

¹Омский государственный технический университет ²Сибирская государственная автомобильно-дорожная академия

Определены уравнения винтовых поверхностей основного червяка фрезы для нарезания зубчатых колес, выраженные параметрическими векторными функциями. Разработана компьютерная программа для расчета и построения модели основного червяка фрезы.

Червячная модульная фреза, основной червяк, векторная функция, моделирование.

При проектировании и моделировании червячных модульных фрез одним из главных вопросов является определение профиля их зубьев [1]. Чтобы найти профиль зубьев фрезы и определить его характеристики, необходимо последовательно решить ряд задач: записать уравнение винтовой поверхности основного червяка; записать уравнения винтовой стружечной канавки и передней поверхности зубьев фрезы; выразить уравнение режущих кромок зубьев фрезы; образовать и записать уравнения боковых затылованных поверхностей зубьев фрезы; найти уравнения профиля в соответствующем сечении и определить его характеристики.

В данной статье рассматривается задача определения уравнений винтовых поверхностей основного червяка фрезы в матрично-векторной форме и разработки компьютерной модели основного червяка.

В настоящее время в производстве зубчатых колес наибольшее распространение получили червячные модульные фрезы, профилируемые и изготовляемые на основе исходного архимедова червяка [1, 2]. Основной архимедов червяк представляет собой резьбовое изделие с трапецеидальным профилем резьбы в осевом сечении. Архимедова винтовая поверхность образуется при винтовом движении профиля. Сложное винтовое движение состоит из вращательного вокруг оси и поступательного движения профиля вдоль этой же оси. Для определения профиля обкатных инструментов, как известно, применяются графические, графоаналитические и аналитические методы. Необходимая точность достигается только аналитическими методами [3]. В этой связи в работе рассматривается аналитическое описание профиля основного червяка фрезы векторными функциями.

Рассмотрим профиль зуба фрезы в осевом сечении (рис.1). Профиль имеет пять участков. Участки O_1A и O_5D являются образующими правой и левой боковых винтовых поверхностей червяка. Участок O_3C образует периферийную винтовую поверхность червяка, а участки AO_3 и CO_5 – поверхности закругления вершины зубьев. Следует отметить, что участки закругления ножки зуба при описании профиля не рассматриваются, так как они не принимают участия в процессе резания и формообразования зубьев нарезаемого колеса.

Угол профиля основного червяка определяется зависимостью

$$tg\alpha_{x0} = \frac{tg\alpha_0}{\cos\gamma_{m0}},$$
(1)

где a_0 – угол профиля исходного конту-

ра; g_{m0} – угол подъёма винтовой линии на делительном цилиндре.

Рис. 1. Профиль основного червяка:

 r_{a0} – радиус закругления; a_{x0} – угол профиля; h_0 – высота профиля; S_{xo} – толщина профиля; m_0 – модуль; c^* – коэффициент радиального зазора; R_{f0} – радиус внутреннего цилиндра; R_0 – радиус делительного цилиндра; R_{a0} – радиус наружного цилиндра

Участки профиля в своих локальных системах координат $Y_1O_1Z_1X_1$, $Y_2O_2Z_2X_2$, $Y_3O_3Z_3X_3$, Y_4 $O_4Z_4X_4$ и $Y_5O_5Z_5X_5$ описываются векторами

$$\bar{r}_{\pi}(i,n) = \begin{bmatrix} 0\\ y(i,n)\\ z(i,n)\\ 1 \end{bmatrix},$$
(2)

где i – номер вектора, i = 1, ..., 5; n – количество точек на векторе, $0 \le n \le p$, p – любое целое число.

Координаты точек на участках профиля, например точки *M* (рис. 1), определяются выражениями:

$$y(i,n) = l(i,n)\overline{e}_{y}(\overline{r}_{n}(i,n));$$

$$z(i,n) = l(i,n)\overline{e}_{z}(\overline{r}_{n}(i,n)),$$
(3)

где $\overline{e}_{y}(\overline{r}_{n}(i,n))$ и $\overline{e}_{z}(\overline{r}_{n}(i,n))$ – орты векторов $\overline{r}_{n}(i,n)$; l(i,n) – выбранное значение длины векторов $\overline{r}_{n}(i,n)$, $0 \le l(i,n) \le |\overline{r}_{n}(i,n)|$.

Участки закругления профиля *AO*₃ и *CO*₅ описываются векторами:

$$\bar{r}_{n}(2,n) = \begin{bmatrix} 0 \\ r_{a0} \sin g_{2} \\ r_{a0} \cos g_{2} \\ 1 \end{bmatrix};$$

$$\bar{r}_{n}(4,n) = \begin{bmatrix} 0 \\ r_{a0} \sin g_{4} \\ r_{a0} \cos g_{4} \\ 1 \end{bmatrix},$$
(4)

где параметрические углы g_2 и g_4 имеют значения: $270^{\circ} - a_{x0} \le g_2 \le 360^{\circ}$; $0^{\circ} \le g_4 \le 90^{\circ} - a_{x0}$. Радиус закругления r_{a0} определяется по формуле [4]:

$$r_{a0} = \frac{c^* m_0}{1 - \sin a_{x0}}.$$
 (5)

В глобальной системе координат $Y_0O_0Z_0X_0$ векторы (2) запишутся:

$$\bar{r}_{0}(1,n) = [M_{10}] \bar{r}_{n}(1,n) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & R_{f0} \\ 0 & 0 & 0 & 1 \end{bmatrix} \times$$

$$\times \begin{bmatrix} 0 \\ y(1,n) \\ z(1,n) \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ y(1,n) \\ R_{f0} + z(1,n) \\ 1 \end{bmatrix};$$

$$\bar{r}_{0}(2,n) = \begin{bmatrix} M_{20} \end{bmatrix} \bar{r}_{n}(2,n) = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & B \\ 0 & 0 & 1 & R_{a0} - r_{a0} \\ 0 & 0 & 0 & 1 \end{bmatrix} \times$$

$$\times \begin{bmatrix} 0\\ y(2,n)\\ z(2,n)\\ 1 \end{bmatrix} \begin{bmatrix} 0\\ B+y(2,n)\\ R_{a0}-r_{a0}+z(2,n)\\ 1 \end{bmatrix},$$

где $B = (h_0 - c^*m_0)tga_{x0} + r_{a0}\cos a_{x0}$

$$\bar{r}_{0}(3,n) = \begin{bmatrix} M_{30} \end{bmatrix} \bar{r}_{n}(3,n)$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & B \\ 0 & 0 & 1 & R_{a0} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ y(3,n) \\ 0 \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} 0 \\ B + y(3,n) \\ R_{a0} \\ 1 \end{bmatrix}; \qquad (6)$$

$$\begin{split} \bar{r}_{0}(4,n) &= \begin{bmatrix} M_{40} \end{bmatrix} \bar{r}_{x}(4,n) = \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & B_{1} \\ 0 & 0 & 1 & R_{a0} - \rho_{a0} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ y(4,n) \\ z(4,n) \\ 1 \end{bmatrix} = \\ &= \begin{bmatrix} 0 \\ B_{1} + y(4,n) \\ R_{a0} - r_{a0} + z(4,n) \\ 1 \end{bmatrix}, \\ rge B_{1} &= S_{x0} + c^{*}m_{0} tg\alpha_{x0} - \rho_{a0} \cos\alpha_{x0}; \\ \bar{r}_{0}(5,n) &= \begin{bmatrix} M_{50} \end{bmatrix} \bar{r}_{x}(5,n) = \\ &= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & S_{x0} + c^{*}m_{0} tg\alpha_{x0} \\ 0 & 0 & 1 & R_{f0} + h_{0} - c^{*}m_{0} \\ 0 & 0 & 0 \end{bmatrix} \times \end{split}$$

$$\times \begin{bmatrix} 0\\ y(5,n)\\ z(5,n)\\ 1 \end{bmatrix} = \begin{bmatrix} 0\\ S_{x0} + c^* m_0 tg\alpha_{x0} + y(5,n)\\ R_{f0} + h_0 - c^* m_0 + z(5,n)\\ 1 \end{bmatrix}$$

где $[M_{i0}]$ – матрицы параллельных переносов локальных систем координат $X_1O_1Y_1X_1$, $X_2O_2Y_2X_2$, $X_3O_3Y_3X_3$, $X_4O_4Y_4X_4$ и $X_5O_5Y_5X_5$, соответственно.

Произвольная точка M архимедовой винтовой поверхности в системе координат фрезы $X_0O_0Y_0Z_0$, (рис. 2,а) описывается векторной функцией:

$$\bar{r}(i,n) = [M] \bar{r}_0(i,n), \qquad (7)$$

где [M] – матрица преобразования поворотных движений против часовой стрелки вокруг оси O_0Y_0 и поступательных движений вдоль этой оси:

$$[M] = \begin{bmatrix} \cos \varphi_{q} & 0 & -\sin \varphi_{q} & 0 \\ 0 & 1 & 0 & a_{q} & \varphi_{q} \\ \sin \varphi_{q} & 0 & \cos \varphi_{q} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$
 (8)

Рис. 2. Образование винтовой поверхности основного червяка

В формуле (8) угол j_{u} (рис. 2,б) является параметрическим углом поворота винтовой поверхности относительно начального положения. Выражение $a_{u}j_{u}$ определяет проекцию вектора перемещения вдоль оси $O_{0}Y_{0}$. Величина a_{u} является винтовым параметром архимедова червяка. Значение винтового параметра a_{u} определяется выражением

$$a_{u} = \frac{P_{x0}}{2\pi},\tag{10}$$

где P_{x0} – осевой шаг червяка.

По делительному цилиндру шаг P_{x0} вычисляется по формуле

$$P_{x0} = \frac{p \, m_0}{\cos g_{m0}} \,. \tag{11}$$

Максимальное значение угла $\phi_{_{ч max}}$ определяется зависимостью

$$\varphi_{u_{max}} = \frac{L_p}{a_u},\tag{12}$$

где L_p – длина рабочего участка фрезы.

После перемножения матрицы [M] и векторов $\bar{r}_0(i,n)$ и преобразований получаем:

уравнение винтовой поверхности правой стороны витка червяка

$$\bar{r}(1,n) = \begin{bmatrix} -(R_{f0} + z(1,n)) \sin \phi_{y} \\ y(1,n) + a_{y} \phi_{y} \\ (R_{f0} + z(1,n)) \cos \phi_{y} \end{bmatrix}; \quad (13)$$

уравнение винтовой поверхности правого участка закругления витка червяка

$$\bar{r}(2,n) = \begin{bmatrix} -(R_{a0} - r_{a0} + z(2,n)) \sin j_{u} \\ B + y(2,n) + a_{u} j_{u} \\ (R_{a0} - r_{a0} + z(2,n)) \cos j_{u} \end{bmatrix}; \quad (14)$$

уравнение винтовой периферийной стороны витка червяка

$$\bar{r}(3,n) = \begin{bmatrix} -R_{a0} \sin j_{u} \\ B + y(3,n) + a_{u} j_{u} \\ R_{a0} \cos j_{u} \end{bmatrix};$$
(15)

уравнение винтовой поверхности левого участка закругления витка червяка

$$\bar{r}(4,n) = \begin{bmatrix} -(R_{a0} - r_{a0} + z(4,n)) \sin j_{u} \\ B_{1} + y(4,n) + a_{u} j_{u} \\ (R_{a0} - r_{a0} + z(4,n)) \cos j_{u} \end{bmatrix}; (16)$$

уравнение винтовой поверхности левой стороны витка червяка

$$\bar{r}(5,n) = \begin{bmatrix} -\left(R_{f0} + h_0 - c^* m_0 + z(5,n)\right) \sin \varphi_{q} \\ S_{x0} + c^* m_0 tg \alpha_{x0} + y(5,n) + a_{q} \varphi_{q} \\ \left(R_{f0} + h_0 - c^* m_0 + z(5,n)\right) \cos \varphi_{q} \end{bmatrix}$$
(17)

В общем виде векторная функция, описывающая винтовые поверхности основного червяка фрезы запишется:

$$\bar{r}(i,n) = \begin{bmatrix} -R(i,n) \sin \varphi_{u} \\ Y(i,n) + a_{u} \varphi_{u} \\ R(i,n) \cos \varphi_{u} \end{bmatrix},$$
(18)

где R(i,n) – текущий радиус, $R_{f0} \le R(i,n) \le R_{a0}$; Y(i,n) – текущая координата профиля по оси O_0Y_0 , $0 \le Y(i,n) \le S_{x0} + h_0 tg\alpha_{x0}$.

На основании данной методики описания винтовых поверхностей основного червяка фрезы авторами разработана программа с использованием средств языка Achion script 3 для расчёта координат и визуализации поверхностей червяка. На рис. 3 приведена блок-схема расчёта и построения модели основного червяка фрезы. На рис. 4 показана компьютерная модель основного червяка фрезы.

Разработанная модель имеет существенные отличия от известных 3D моделей основного червяка фрезы [5], которые реализуются в графических редакторах с использованием инструментальных средств в виде чертежа и дальнейшим его перемещением и поворотом. Особенность предложенной модели заключается в том, что она является аналитической. В последующих этапах работы данная модель может использоваться при создании аналитической модели червячной модульной фрезы для определения уравнений режущих кромок и уравнений затылованных поверхностей её зубьев. Наряду с вычислением координат режущих кромок каждого из зубьев фрезы такая модель позволит определять характеристики профиля, например, вычислять касательные и нормали в любой точке кромки, необходимые при исследовании параметров процесса резания и формообразования при зубофрезеровании.

Рис. 3. Блок-схема алгоритма и построения модели основного червяка

Рис. 4. Компьютерная модель основного червяка фрезы

Библиографический список

1. Иноземцев, Г. Г. Проектирование металлорежущих инструментов [Текст]: учеб. пособие / Г. Г. Иноземцев. – Машиностроение, 1984. – 272 с.

2. Фингер, М. Л. Цилиндрические колеса. Теория и практика изготовления [Текст] / М. Л. Фингер. – М.: Научная книга, 2005. – 368 с.

3. Режущий инструмент [Текст]: учеб. пособие / А. А. Рыжкин [и др.]. – Ростов н / Д: Феникс, 2009. – 405 с.

4. Полохин, О. В. Нарезание зубчатых профилей инструментами червячного типа [Текст]: справочник / О. В. Полохин, А. С. Тарапанов, Г. А. Харламов; под ред. Г. А Харламова. – М.: Машиностроение, 2007. – 240 с.

5. Тахман, С. И. Создание 3D модели процесс зубофрезерования [Текст] / С. И. Тахман, Л. В. Рохин, О. А. Тюкалов // Вестн. Курганского гос. ун-та, 2010. -№ 1. – С. 118-120.

MODEL OF THE MAIN WORM OF MILLING CUTTERS FOR GEAR CUTTING

© 2012 S. P. Androsov¹, I. G. Brailov², D. V. Vizigin¹

¹Omsk State Technical University ²Siberian State Automobile-Road Academy

The equations of helical surfaces of the main worm of milling cutters designed for gear cutting are defined. They are expressed with parameter vector functions. A computer program is developed for the calculation and construction of the model of the milling cutter main worm.

Module hob, main gear, vector function, modelling.

Информация об авторах

Андросов Сергей Павлович, кандидат технических наук, доцент кафедры сопротивления материалов, Омский государственный технический университет. E-mail: <u>asp57@list.ru</u>. Область научных интересов: моделирование формообразования операций механообработки, в том числе при зубофрезеровании.

Браилов Иван Григорьевич, доктор технических наук, профессор кафедры прикладной механики, Сибирская государственная автомобильно-дорожная академия. Область научных интересов: моделирование формообразования операций механообработки, в том числе при зубофрезеровании.

Визигин Денис Валерьевич, студент факультета информационных технологий и компьютерных систем, Омский государственный технический университет. E-mail: <u>de-nis.vizigin@yandax.ru</u>. Область научных интересов: моделирование формообразования операций механообработки, в том числе при зубофрезеровании.

Androsov Sergey Pavlovich, candidate of technical sciences, associate professor of the department of strength of materials, Omsk State Technical University. E-mail: <u>asp57@list.ru</u>. Area of research: simulation of forming operations of machine work including gear milling.

Brailov Ivan Grigoryevich, doctor of technical sciences, professor of the department of applied mechanics, Siberian State Automobile-Road Academy. Area of research: simulation of forming operations of machine work including gear milling.

Vizigin Denis Valeryevich, student of the faculty of information technologies and computer systems, Omsk State Technical University. E-mail: <u>denis.vizigin@yandax.ru</u>. Area of research: simulation of forming operations of machine work including gear milling.