УДК 621.438:532.5

ИССЛЕДОВАНИЕ ВЛИЯНИЯ ШИРИНЫ ВРАЩАЮЩЕГОСЯ ДИФФУЗОРА НА АДИАБАТИЧЕСКУЮ ЭФФЕКТИВНОСТЬ И СНИЖЕНИЕ ДАВЛЕНИЯ В СИСТЕМЕ ПОДВОДА ВОЗДУХА К РАБОЧЕЙ ЛОПАТКЕ ТУРБИНЫ

© 2011 Р. А. Диденко², Д. В. Карелин¹, Д. Г. Иевлев¹, В. В. Лебедев², Е. В. Белоусова¹

¹ОАО «НПО «Сатурн», г. Рыбинск

²Рыбинская государственная авиационная технологическая академия им. П.А. Соловьева

Представлены результаты численного моделирования влияния ширины вращающегося диффузора на эффективность системы подвода воздуха к рабочей лопатке турбины, определенные с учетом геометрии диффузора и реальных эффектов течения вязкого теплопроводного газа. Расчеты проведены в диапазоне вращательного числа Рейнольдса $1.69e7 < \mathrm{Re}_{\phi} < 2.33e7$ и безразмерного расхода воздуха $2.79e5 < C_w < 5.73e5$, что соответствует реальным режимам работы ГТД. В исследованном диапазоне чисел Рейнольдса и безразмерного расхода результаты расчетов показали, что в узком вращающемся диффузоре слои Экмана отсутствуют, в диффузоре средней ширины слои Экмана исчезают при увеличении C_w , в широком присутствуют, но занимают незначительную часть области течения у вращающихся стенок. Таким образом, при увеличении ширины диффузора проявлялись слои Экмана, но их влияние на интегральные характеристики потока не обнаружено. В итоге влияние ширины вращающегося диффузора на его адиабатическую эффективность и снижение давления оказалось несущественным.

Приведены обоснования к выбору сеточной дискретизации и модели турбулентности.

Система подвода, рабочая лопатка, турбина, ширина вращающегося диффузора.

25	 — адиаоатическая эффективность;
Обозначения и сокращения:	$S_{omm} = s/b$ – относительная ширина диффу-
A3 - аппарат закрутки;	3002.
$\lambda_{\rm T} = C_{\rm W} {\rm Re}_{\phi}$ - параметр структуры потока;	V_{-} рациан ная компонента скорости
$C_w = \frac{G}{\mu b}$ – безразмерный расход;	<i>г</i> , – радиальная компонента скорости.
C	Индексы:
$\beta = \frac{-u}{2} - 3$ акрутка потока;	u – окружное направление;
ωr	* – параметр торможения;
$\beta_{iid} = \beta_0 \left(\frac{r_0}{r_i}\right)^2$ – закрутка при свободном вихре;	отн – относительный; id – изоэнтропическое течение, свободный вихрь;
$(\mu)^{1/2}$ 5 5	1 - сечение под лопаткои,
$D = \left \frac{\mu}{2^* \Omega} \right $ – масштао слоя Экмана;	$\delta = ceretine nod oduoherom,$
$(\rho \omega)$	0 - ceqenue ha Bbix0de us AS,
$Ek = \frac{\mu}{1} = \frac{1}{1} - $ число Экмана;	влаз – влод в аннарат закрутки,
$\rho^* \omega s^2 G^2 \operatorname{Re}$	эффекта кондиционирования режимы
$\zeta = \frac{p_{exA3} - p_{8 rel}}{1}$ -безразмерное снижение давления;	работы системы подвода.
$\frac{1}{2}\rho_{25}\omega^2 r_{25}^2$	Ввеление
$\sum_{n=0}^{\infty} \alpha^{*} \alpha b^{2}$	
$\operatorname{Re}_{\phi} = \frac{\rho \omega \sigma}{1 - \rho}$ – вращательное число Рейнольдса;	
μ	воздуха к раоочеи лопатке используются
$R_{O} = \frac{G}{M_{W}} = \frac{C_{W}}{M_{W}}$ – число Россби;	системы с предварительной закруткой воз-
$4\pi r^2 \omega D = 4\pi r^2 \operatorname{Re}_{\phi}^{0.5}$	духа в аппарате закрутки (АЗ) в направлении
r – радиус, м;	вращения диска турбины, при этом темпера-
C – скорость, м/с;	тура и давление воздуха в относительном
ρ – плотность, кг/м ³ :	
() = VEHOBAS CRODOCTE DAT/C.	движении могут снижаться.
b phenului palitic hiddy and M	закрученный поток из полости за Аз
$U = \pi H = \pi H = 0$	поступает в щелевой радиальный диффузор,
μ – дипалиическая вязкость, н с/м,	образованный диском и покрывным диском.
G – расход, кг/с;	В зависимости от конструкции покрывного
<i>s</i> – ширина, м;	
	днока различают системы с подачей воздуха

через кольцевой ряд дискретных отверстий или непрерывной кольцевой струей. В данной работе исследуется вариант подачи воздуха непрерывной кольцевой струей. В на-

стоящее время применяются системы подвода воздуха как с узким, так и с широким вращающимся диффузором (рис. 1, а,б).

Рис. 1. Системы подвода с различной шириной вращающегося диффузора: а - двигатель GE90, б - двигатель CFM56, в - схематическое представление структуры течения в полости вращающегося диффузора

Схематично структура потока во вращающемся радиальном диффузоре (далее по тексту "диффузор") с осевым входом и радиальным выходом представлена на рис. 1, в.

Всю область течения принято разбивать на три участка: начальный – область сильного инерционного течения; средний - область развитого ядра потока со слоями Экмана на стенках; выходной участок, где формируется поток на входе в байонет. В ядре потока его структура близка к свободному вихрю. Взаимодействие ядра потока с пограничными слоями зависит от геометрических особенностей диффузора, расхода воздуха и закрутки потока. Из-за окружного торможения потока и работы центробежной силы в диффузоре происходит восстановление полного давления и температуры в относительном движении. Из диффузора воздух через байонетное соединение поступает в каналы охлаждения рабочей лопатки.

Для характеристики структуры потока необходимы и достаточны два независимых параметра [1,3,14,21,23]. Так, в качестве параметров, определяющих структуру турбулентного потока в полости диффузора, часто используются начальная закрутка потока β_0 и параметр турбулентной структуры λ_T :

$$\beta_0 = \frac{C_{u0}}{\omega r_0},\tag{1}$$

$$_{T} = C_{w} \operatorname{Re}_{\phi}^{-0.8}.$$
 (2)

Другой парой независимых параметров [8] могут быть числа Рейнольдса (3) и Россби (4):

$$\operatorname{Re}_{\phi} = \frac{\rho^* \omega b^2}{\mu},\tag{3}$$

$$Ro = \frac{G}{4\pi r^2 \omega D} \,. \tag{4}$$

В работе [10] в качестве независимых параметров выбирают $C_w = \frac{G}{\mu b}$ и Re_{ϕ} .

При исследовании влияния ширины диффузора на характеристики системы подвода с различной шириной вращающегося диффузора в [15] использован критерий подобия $S_{omn} = s/b$ – относительная ширина диффузора. Вместо относительной ширины диффузора S_{omn} и числа Рейнольдса Re_{ϕ} можно пользоваться числом Экмана (3):

$$Ek = \frac{\mu}{\rho^* \omega s^2} = \frac{1}{S_{omu}^2 \operatorname{Re}} \quad . \tag{5}$$

Основными показателями эффективности работы системы подвода являются безразмерная адиабатическая эффективность Θ и Θ_{id} , коэффициент потерь давления [1,14,17,18]:

$$\zeta = \frac{p_{axA3}^* - p_{i\,rel}^*}{\frac{1}{2}\rho_0 \omega^2 r_0^2},\tag{6}$$

$$\Theta = \frac{2Cp(T_{exA3}^* - T_{irel}^*)}{\omega^2 b^2},$$
(7)

$$\Theta_{id} = 2\beta_{iid} \left(\frac{r_0}{r_i}\right)^2 - 1.$$
(8)

Исследования [1,12,14,16,21,23], выполненные в диапазоне критериев подобия $0.1 < \lambda_T < 0.4$, $0.6 \cdot 10^6 < \text{Re}_{\phi} < 1.8 \cdot 10^6$, показали фактическое отсутствие влияния ширины полости на разницу между адиабатической эффективностью Θ и Θ_{id} , определяемой из условия идеальности течения. Отмечено лишь ее влияние на безразмерное снижение давления ζ , причем с увеличением β_0 разница в потерях для широкой и узкой полости $\Delta \zeta$ возрастает.

Исходя из вышеизложенного, авторами была поставлена задача провести исследование влияния ширины вращающегося диффузора на характеристики системы подвода в диапазоне критериев подобия, характерных для реального двигателя, то есть расширить ранее изученный диапазон в практически значимую область.

Геометрия расчетной области и особенности моделирования

На рис. 2 приведены расчетная область и варианты геометрии вращающегося диффузора.

При дискретизации осредненных по Рейнольдсу уравнений Навье-Стоккса (RANS) использована аппроксимация по методу конечных объемов, со схемой второго порядка точности. При решении уравнения энергии учитывалась работа вязких сил. Эффект плавучести в поле центробежных сил не учитывался.

Расчеты велись на гибридной расчетной сетке с тетраэдрами в середине и призматическими слоями на стенках, число сеточных узлов составляло в среднем 5.5 млн., в периодической постановке. Стенки задавались гладкими и адиабатными. Коэффициенты вязкости теплоемкости и теплопроводности воздуха рассчитывались в зависимости от температуры.

*Рис. 2. Расчетная область и варианты гео*метрии и расчетная сетка

Все расчёты были выполнены с одинаковыми установками решателя и остановлены при достижении уровня сходимости по нормализованным среднеквадратичным невязкам ниже 5Е-5 и дисбалансу 0.1% для расхода воздуха. При вращательном числе Re_{ϕ} порядка 10⁷ вклад вязких членов в уравнениях по сравнению с инерционными невелик. Поэтому нами использована рекомендованная в работах [7,8] SST модель турбулентности с пристеночными функциями.

Результаты расчетов. Исследование проведено в диапазоне критериев:

 $0.375 < \lambda_T < 0.75$, $1.69 \cdot 10^7 < \text{Re}_{\phi} < 2.33 \cdot 10^7$, $2.79 \cdot 10^5 < C_w < 5.73 \cdot 10^5$, $0.548 < \beta < 2.5$ ДЛЯ УЗКОГО $S_{omh} = 0.01$, среднего $S_{omh} = 0.04$ и широкого $S_{omh} = 0.2$ диффузоров.

На рис. З представлено изменение реальной закрутки потока β и идеальной β_{id} в диффузоре в зависимости от начальной закрутки $\beta_0 = Cu_0 / U_0$ для различной ширины вращающегося диффузора, для трех радиусов расположения АЗ.

Из рис. З видно, что вне зависимости от радиуса расположения АЗ ширина диффузора не влияет на закрутку под байонетом β . Данный вывод можно сделать исходя из наложения расчетных значений β для узкого, среднего и широкого диффузоров на линии β_{id} , найденные из предположения о свобод-

ном вихре в полости диффузора. Таким образом, с достаточной для практики долей приближения можно считать, что закрутка в полости изменяется по закону свободного вихря. Аналогичный вывод сделан в работах [1, 2, 5, 9, 11, 15, 16, 22, 23]. Отметим, что для нижнего и среднего расположения АЗ реальная закрутка β несколько превышает идеальную β_{id} , что можно объяснить влиянием конструкции, в частности дискретного байонетного соединения, на изменение закрутки в диффузоре.

О наличии или отсутствии слоев Экмана на стенках в полости диффузора можно судить по эпюре радиальной скорости, построенной по ширине полости и по картине линий тока. На рис. 4-5 приведены картины линий тока в диффузорах различной ширины и соответствующие им графики распределения по ширине диффузора радиальной компоненты скорости потока.

Рис. 4. Узкий вращающийся диффузор Somн=0.01, R omн= 0.50: а - линии тока в радиальном сечении для Cw=2.79e5, Reф=1.693e7, β=1.24, б - профили радиальной компоненты скорости в сечениях A, B, C

Расположение сечений А, Б, и С совпадает. Из рис. 4 видно, что профили радиальной скорости указывают на отсутствие слоев Экмана. Для среднего по ширине диффузора (рис. 5-6), что при увеличении C_w с 2.79е5 до 5.18е5 длина начального участка увеличивается, а слой Экмана пропадает.

На рис. 7 для широкого вращающегося диффузора приведены картины линий тока и соответствующие им графики распределения по ширине диффузора радиальной компоненты скорости потока.

Из рис. 7 видно, что для широкого диффузора характерно наличие слоев Экмана. Здесь радиальные скорости в центре равны 0 или отрицательны в случае возвратного движения.

Рис. 5. Линии тока в радиальном сечении для иллюстрации слоев Экмана для среднего диффузора Somн=0.04, Romн = 0.50: a - Cw=2.79e5, Reф=1.693e7, β=1.24 b - Cw=2.79e5, Reф=2.323e7, β=1.323; c - Cw=5.18e5, Reф=2.317e7, β=2.55

Рис. 6. Профили радиальной компоненты скорости в сечениях А, В,С для вариантов, показанных на puc. 7

Таким образом получено, что радиальная компонента скорости для одинаковых Re_ф и C_w увеличивается при уменьшении относительной ширины диффузора Some.

На рис. 8-10 показано изменение адиабатической эффективности вращающегося диффузора: а) безразмерное изменение давления, б) для различных радиусов расположения АЗ в чистом виде (до байонета - сечение 8) и вместе с байонетом (до сечения -1), в зависимости от начальной закрутки $\beta_0 = C u_0 / U_0.$

Рис. 7. Широкий вращающийся диффузор S_{отн}=0.2, R_{отн}= 0.50: а - линии тока в радиальном сечении для иллюстрации слоев Экмана для широкого диффузора для Cw=2.79e5, Reф=1.693e7, β=1.323; б - профили радиальной компоненты скорости в сечениях A, B,C

а

б Рис. 8. Адиабатическая эффективность и безразмерное снижение давления для узкого, стандартного и широкого диффузора, нижнее расположение АЗ R_{отн}= 0.50

Рис. 9. Адиабатическая эффективность(а) и безразмерное снижение давления (б) для узкого, стандартного и широкого диффузора, среднее расположение A3 R_{отн}= 0.66

Рис. 10. Адиабатическая эффективность и безразмерное снижение давления для узкого, стандартного и широкого диффузора, верхнее расположение АЗ R_{отн}= 0.8

Область допустимых режимов работы ограничивается начальной закруткой β_{0acc} , начиная с которой имеет место снижение температуры в относительном движении ($\Theta > 0$), то есть проявляется эффект кондиционирования. Из анализа графиков на рис. 8-10 следует, что для нижнего расположения АЗ $\beta_{0acc} > 2$, для среднего $\beta_{0acc} > 1.2$ и для верхнего $\beta_{0acc} > 0.75$.

На всех рисунках отмечены режимы с затеканием горячего газа из осевого зазора. Затекание горячего газа резко снижает адиабатическую эффективность и увеличивает потери полного давления и температуру воздуха под лопаткой, поэтому данные режимы также не допускаются.

Сплошная линия на графиках соответствует идеальной адиабатической эффективности Θ_{id} , вычисленной по предположению о свободном вихре β_{id} внутри полости диффузора. Видно, что данные численного моделирования хорошо согласуются с расчетом по формуле (7). Таким образом, вне зависимости от радиуса расположения АЗ, ширина диффузора не влияет на адиабатическую эффективность.

Кривые на рис. 7, 9 и 10 пересекают ось ординат при значении $\Theta = -1$, что соответствует нулевой закрутке потока $\beta_0 = 0$ на входе.

В предположении изоэнтропичности течения можно ожидать, что безразмерное снижение давления ζ также не будет зависеть от ширины вращающегося диффузора (рис. 8-10, б). Однако расчеты показали некоторое отклонение от данного предположения для нижнего расположения АЗ в диапазоне $\beta_0 = Cu_0/U_0$ <1.4, хотя данный ре-

жим не реализуется в двигателе, так как не обеспечивает снижение температуры под ло-паткой.

Отрицательные значения величины ζ говорят о том, что полное давление в относительном движении на выходе из диффузора становится больше, чем полное давление на входе в АЗ.

Таким образом, в реализуемом на двигателе диапазоне β_0 , обеспечивающем снижение температуры под лопаткой, Re_{ϕ} и C_w , слои Экмана практически не проявляются, а в случае широкого диффузора они занимают относительно небольшую часть течения, поэтому влияние ширины вращающегося диффузора на безразмерное снижение давления ζ не наблюдается.

Заключение

1. В диапазоне критериев подобия, соответствующих режиму работы реального ГТД $0.375 < \lambda_T < 0.75$, $1.69 \cdot 10^7 < \text{Re}_{\phi} < 2.33 \cdot 10^7$, $2.79 \cdot 10^5 < C_w < 5.73 \cdot 10^5$, $0.548 < \beta < 2.5$, проведено исследование влияния ширины вращающегося диффузора на показатели эффективности системы подвода воздуха к рабочей лопатке турбины для различных радиусов расположения аппарата закрутки.

2. Для режимов течения, обеспечивающих снижение температуры и давления под лопаткой (для нижнего расположения $\beta_{0acc} > 2$, для среднего $\beta_{0acc} > 1.2$ и для верхнего $\beta_{0acc} > 0.75$), не обнаружено влияния ширины дисковой полости на адиабатическую эффективность и безразмерное снижение давления.

3. Полученные результаты качественно согласуются с данными в работах [1,12,14,16, 21,23], для параметров $0.1 < \lambda_T < 0.4$,

 $0.6 \cdot 10^6 < \text{Re}_{\phi} < 1.8 \cdot 10^6$, не соответствующих реальным режимам работы ГТД.

4. Ширину вращающегося диффузора выбирает конструктор исходя из конструктивной необходимости, прочности, массы и динамических характеристик ротора турбины.

Библиографический список

1. Karabay, H. Flow in a "Cover-Plate" Preswirl Rotor-Stator System/ H. Karabay, J.-X. Chen, R. Pilbrow [et al] J.of TM vol 121, pp. 160-166.

2. Lewis, P. Physical Interpretation of Flow and Heat Transfer in Pre-swirl systems / P. Lewis, M. Wilson, G. Lock [et al] ASME Paper GT2006-90132.

3. Owen, J.M. Flow and Heat Transfer in Rotating-Disc Systems, Volume 2: Rotating Cavities / J M Owen, R.H. Rogers Research Studies Press, Taunton, UK / Wiley, New York.1995.

4. Owen, J. M. Source-sink flow inside a rotating cylindrical cavity / J.M. Owen, J. R. Pincombe, R. H. Rogers J. Fluid Mech. (1985). VOZ. 156, pp. 233-265.

5. Owen, J. M. An Approximate Solution for the Flow Between a Rotating and a Stationary Disk / J. M. Owen J. of Turbomachinery, vol. 111, p 323.

6. ANSYS CFX 11 help.

7. Bardina, J.E. Turbulence Modeling, Validation, Testing and Development / J.E. Bardina, P.G. Huang, Coakley T.J. NASA Technical Memorandum 110446, 1997.

8. Louis, J. F. Turbulent Flow Velocity Between Rotating Co-axial Disks of Finite Radius / J.F. Louis, A.J. Salhi, J of Turbomachinery, vol 111, p. 333.

9. Youyou, Yan Mahmood Farzaneh Gord Gary D Lock Michael Wilson J Michael Owen FLUID DYNAMICS OF A PRE-SWIRL ROTOR-STATOR SYSTEM / Yan Youyou ASME Paper GT-2002-30415.

10. Morse, A.P. Numerical Prediction of Turbulent Flow in Rotating Cavities J. of Turbomachinery / A.P. Morse vol 110, p. 202.

11. Ong, C.L. Boundary-Layer Flows in Rotating Cavities / C.L. Ong, J.M. Owen J. of Turbomachinery, vol. 111, p 341.

12. El-Sadi, H. CFD study of hpt blade cooling flow supply systems / H. El-Sadi, G.

Guevremont, R. Marini [etal] ASME Paper GT2007 27228.

13. Gupta, A.K. Numerical Simulation of TOBI Flow – Analysis of the Cavity between a Seal-Plate and HPT Disk with Pumping Vanes / A. K. Gupta, D. Ramerth, D. Ramachandran, ASME Paper GT2008-50739.

14. Jarzombek, K. Flow Analysis in gas turbine pre-swirl cooling air systems – variation of geometric parameters / K. Jarzombek, H.J. Dohmen, F.-K. Benra, O. Schneider ASME Paper GT2006-90445.

15. Karabay, H. Performance of Pre-Swirl Rotating-Disc Systems / H. Karabay, R. Pilbrow, M. Wilson // J. of Eng. For G.T and Power, vol 122, p 442-450.

16. Karabay, H. Predictions of effect of swirl on flow and heat transfer in rotating cavity / H. Karabay, M. Wilson, J. M. Owen Int. J.of Heat and Fluid Flow 22(2001) 143-155.

17. Lewis, P. Effect of radial location of nozzles on performance of pre-swirl systems / P. Lewis, M. Wilson, G. Lock [et al] ASME Paper GT2008-50295.

18. Lewis, P. Physical Interpretation of Flow and Heat Transfer in Pre-swirl systems / P. Lewis, M. Wilson, G. Lock [et al] ASME Paper GT2006-90132.

19. El-Oun, Z.B. Preswirl Blade-Cooling Effectiveness in an Adiabatic Rotor-Stator System/ Z.B. El-Oun, J.M. Owen ASME J. Turbomachinery, 111, 1989. pp. 522-529.

20. Chew, J.W. Pre-Swirled Cooling Air Delivery System Performance / J.W. Chew, F. Ciampoli, N.J. Hills [et al] ASME Paper GT2005-68323. 2005.

21. Farzaneh-Gord, M. Numerical and Theoretical Study of Flow and Heat Transfer in a Pre-Swirl Rotor-Stator System / M. Farzaneh-Gord, M. Wilson, J.M. Owen ASME Paper GT2005-68135. 2005.

22. Chew, J.W. Numerical predictions for laminar source-sink flow in a rotating cylindrical cavity / J.W. Chew, J.M. Owen, J.R. Pincombe J. Fluid Mech. (1894), vol 143, pp. 541-466.

23. Karabay, H. Approximate solutions for flow and heat transfer in pre-swirl rotating-disc systems/ H. Karabay, M. Wilson, J.M. Owen ASME Paper 2001-GT-0200.

EFFECT OF CAVITY WIDTH ON PERFORMANCE OF PRE-SWIRL SYSTEMS

© 2011 R. A. Didenko¹, D. V. Karelin¹, D. G. Ievlev¹, V. V. Lebedev², E. V. Belousova¹

¹JSC «Saturn»

² Rybinsk State Academy of Aviation Technology named P.A. Solovjov

This paper investigates the effect of cavity width on effectiveness Θ and total pressure losses ζ of pre-swirl systems. Computations are performed for the flow parameter $0.375 < \lambda_{\tau} < 0.75$, rotational Reynolds number $1.69 \cdot 10^7 < \text{Re}_{\phi} < 2.33 \cdot 10^7$, throughflow Reynolds number or non-dimensional mass flow rate $2.79 \cdot 10^5 < C_w < 5.73 \cdot 10^5$ and swirl ratio $0.548 < \beta < 2.5$. No influence on Θ and ζ is found by changing the cavity width.

Pre-swirl system, working blade, turbine, cavity width inlet nozzles.

Информация об авторах

Диденко Роман Алексеевич, аспирант кафедры авиационных двигателей и энергетических установок Рыбинской государственной авиационной технологической академии, инженер 2 категории КО систем инженерного анализа ОАО «НПО «Сатурн». Тел./факс: (4855) 296-471. E-mail: <u>rommdi@rambler.ru</u>. Область научных интересов: методы вычислительной газовой динамики и сопряженного теплообмена, системы подвода охлаждающего воздуха к рабочим лопаткам турбин, тепловое состояние рабочих лопаток турбин.

Иевлев Дмитрий Геннадьевич, начальник КО систем инженерного анализа ОАО «НПО «Сатурн». Тел./факс: (4855) 296-471. Е-mail: <u>dmitry.ievlev@npo-saturn.ru</u>. Область научных интересов: методы вычислительной газовой динамики и сопряженного теплообмена, комплексная оценка эффективности схем охлаждения и теплового состояния лопаток турбины, системы подвода охлаждающего воздуха к рабочим лопаткам турбин, рабочие процессы в камерах сгорания.

Карелин Дмитрий Владимирович, заместитель начальника КО турбин ОАО «НПО «Сатурн». Тел./факс: (4855) 296-471. Область научных интересов: создание турбины двигателя нового поколения.

Лебедев Владимир Владимирович, кандидат технических наук, доцент кафедры авиационных двигателей и энергетических установок Рыбинской государственной авиационной технологической академии. Область научных интересов: газовая динамика и тепломассообмен, общая и техническая физика.

Didenko Roman Alexeevich, postgraduate student of Department of methods of engineering and numerical analysis, Rybinsk State Academy of Aviation Technology named P.A. Solovjov. JSC "Saturn". Phone/fax: (4855) 296-471. E-mail: <u>rommdi@rambler.ru</u>. Area of research: methods of computational fluid dynamics and conjugate heat transfer in air-supply systems and turbine blades.

Ievlev Dmitry Anatolyevich, Head of Engineering Analysis Department, JSC "Saturn". Phone: (4855) 296-471, fax: (4855) 296-409. Area of research: methods of computational fluid dynamics and conjugate heat transfer in turbine blades and air-supply systems.

Karelin Dmitry Vladimirovich, Chief of the Turbine Department, JSC "Saturn". Phone: (4855) 296-471. Area of research: turbine for the new generation jet.

Lebedev Vladimir Vladimirovich, Candidate of Engineering science, docent of Aviation Engines chair, Rybinsk State Academy of Aviation Technology named P.A. Solovjov. Area of research: fluid dynamics and heat/mass transfer, physics.