Generation of optical signals carrying OAM based on vortex fiber-optic periodic structures

Cite item


In this article, author considers the process of generation of fiber modes carrying orbital angular momentum (vortex modes) using chiral fiber Bragg gratings; in this context, the formation of vortex modes is carried out by converting the fundamental mode into higher order modes. Within the framework of the article, a generalized mathematical model of chiral fiber Bragg gratings is presented, which includes an arbitrary function of apodization and chirping, which makes it possible to calculate gratings that form vortex modes of a given order for the required frequency range with the required reflection coefficient. In addition, a matrix method for describing chiral fiber Bragg gratings is proposed, based on the mathematical apparatus of the coupled modes theory and scattering matrices. This matrix approach is convenient for describing complex and / or cascaded gratings. In addition, in this work, simulation of the considered fiber structures is carried out.

About the authors

Azat R. Gizatulin

Ufa State Aviation Technical University

Author for correspondence.


  1. An overview of radio-over-fiber network technology / A.M. Zin [et al.] // International Conference on Photonics 2010. 2010. P. 1–3. DOI:
  2. Special issue on novel insights into orbital angular momentum beams: from fundamentals, devices to applications / Y. Yue [et al.] // Appl. Sci. 2019. Vol. 9, No. 13. P. 2600. DOI:
  3. Защищенный сегмент RoF субтерагерцового диапазона с независимой оптической модуляцией частотных свойств радиоканала и параметра управления фазированной антенной решёткой / И.Л. Виноградова [и др.] // Компьютерная оптика. 2018. Т. 42, № 5. С. 786–799. DOI:
  4. Конвертирование вихревых пучков оптического диапазона в радиодиапазон на основе нелинейной генерации разностной частоты / В.Х. Багманов [и др.] // Компьютерная оптика. 2019. Т. 43, № 6. С. 983–991. DOI:
  5. The vortex beams conversion from the optical range into the radio domain based on the nonlinear generation of the difference frequency / V.Kh. Bagmanov [et al.] // 2019 27th Telecommunications Forum (TELFOR). Belgrade, Serbia. 2019. P. 1–4. DOI:
  6. Vashukevich E.A., Golubeva T.Yu., Golubev Yu.M. Conversion and storage of modes with orbital angular momentum in a quantum memory scheme // Physical Review A. 2020. Vol. 101, No. 3. P. 033830. DOI:
  7. Морозов О.Г., Сахабутдинов А.Ж. Адресные волоконные брэгговские структуры в квазираспределенных радиофотонных сенсорных системах // Компьютерная оптика. 2019. Т. 43, № 4. С. 535–543. DOI:
  8. Tai H. Theory of fiber optical Bragg grating: revisited // Proc. SPIE. Optical Modeling and Performance Predictions. 2004. Vol. 5178. P. 131–138. DOI:
  9. Computer Design of Diffractive Optics / V.A. Soifer [et al.]. Sawston: Woodhead Publishing, 2012. 896 p.
  10. Othonos A. Fiber Bragg gratings // Review of Scientific Instruments. 1997. Vol. 68, No. 12. P. 4309. DOI:
  11. Kashyap R. Fiber Bragg Gratings. London: Academic Press, 1999. 478 p.
  12. Yariv A., Nakamura M. Periodic structures for integrated optics // IEEE Journal of Quantum Electronics. 1977. Vol. 13, No. 4. P. 233–253. DOI:
  13. Yamada M., Sakuda K. Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach // Applied Optics. 1987. Vol. 26, No. 16. P. 3474–3478. DOI:
  14. Ho K.-P., Kahn M. Linear propagation effects in mode-division multiplexing systems // Journal of Lightwave Technology. 2014. Vol. 32, No. 4. P. 614–628. URL:
  15. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities / Y. Shen [et al.] // Light: Science & Applications. 2019. Vol. 8, No. 1. P. 90. DOI:

Copyright (c) 2020 Gizatulin A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies