Физика волновых процессов и радиотехнические системы

УДК 621.372.8

Расчет коэффициентов замедления и затухания волны Зоммерфельда *E*₀₀ в цилиндрическом проводнике большого радиуса

М.В. Кольцов, Ю.А. Иларионов

Нижегородский государственный технический университет им. Р.Е. Алексеева 603950, Российская Федерация, г. Нижний Новгород ул. Минина, 24

По разработанной методике решения дисперсионного уравнения для волны E_{00} (волны Зоммерфельда) в цилиндрическом проводнике большого радиуса с конечной проводимостью рассчитаны зависимости коэффициентов замедления и затухания от частоты ($f \le 1$ МГц) для цилиндра с радиусом Земли и материальными параметрами морской воды ($\sigma_1 = (1 \div 5)$ (Ом · м)⁻¹).

Ключевые слова: коэффициенты замедления и затухания, волна Зоммерфельда, цилиндрический проводник.

Методика решения дисперсионного уравнения для волны E_{00} (волны Зоммерфельда) в однопроводной линии с конечной проводимостью, окруженной диэлектриком с потерями, в области частот, где скин-эффект сильный (модуль безразмерного поперечного волнового числа внутри провода $|x| \gg 1$), а модуль безразмерного поперечного волнового числа вне провода $|y| \ll 1$, разработана в [1; 2]. В [1-4] также исследовано влияние на поведение коэффициентов замедления, затухания и волнового сопротивления волны Е₀₀ параметров линии (радиуса а и удельной проводимости σ₁ провода) и окружающей среды (относительной диэлектрической проницаемости ε_2 и удельной проводимости σ_2), приведены результаты исследования распределения электромагнитного поля волны Е00 по поперечному сечению в окружающем линию пространстве для медных проводов радиусом а в диапазоне частот f = 0, 5...2 ГГц.

В работе [5] произведен анализ дисперсионного уравнения для волны E_{00} в цилиндрическом проводнике с конечной проводимостью ($\sigma_1 \neq \infty$) в области частот, где поперечные волновые числа внутри и вне проводника велики ($|x| \gg 1, |y| \gg 1$). Это возможно, например, либо в металлических проводниках ($\sigma_1 = (1,...,6) \times 10^7$ (Ом · м)⁻¹) малых размеров (a = (1,...,10) мм), либо для проводника – морская вода ($\sigma_1 = (1,...,5)$ (Ом · м)⁻¹) больших размеров ($a = R_3 = 6375$ км) на частотах f < 1 МГц. В [5] приведены результаты расчетов только на крайних частотах диапазона, где $|x| \gg 1, |y| \gg 1$, для проводника – морская вода и $a = R_3$ при одном значении $\sigma_1 = 5 (\text{Ом} \cdot \text{м})^{-1}$.

Данная работа посвящена расчету коэффициентов замедления и затухания волны Зоммерфельда в цилиндрическом проводнике – морская вода большого радиуса ($a = R_3$) в диапазоне частот ($f \le 1$ МГц) для нескольких значений удельной проводимости ($\sigma_1 = (1, ..., 5)$ (Ом · м)⁻¹).

Точное дисперсионное уравнение для волн E_{0m} (m = 0; 1; 2; ...) в цилиндрическом проводнике радиуса a с конечной проводимостью имеет вид

$$\dot{\varepsilon}_1 \frac{\mathbf{F}_0(x)}{x^2} = \dot{\varepsilon}_2 \frac{\Phi_0(y)}{y^2},\tag{1}$$

где $\dot{\epsilon}_1$ и $\dot{\epsilon}_2$ – комплексные относительные диэлектрические проницаемости проводника и окружающей среды;

$$F_0(x) = -xJ_1(x)/J_0(x), \qquad (2)$$

$$\Phi_0(y) = -yH_1^{(1)}(y) / H_0^{(1)}(y) , \qquad (3)$$

где $J_0(x)$ и $J_1(x)$ — функции Бесселя 1-го рода нулевого и первого порядков от комплексного аргумента $x = x_1 + jx_2$, $H_0^{(1)}(y)$ и $H_1^{(1)}(y)$ — функции Ганкеля 1-го рода нулевого и первого порядков от комплексного аргумента $y = y_1 + jy_2$, $y_2 > 0$. Только при этом условии все составляюцие электромагнитного поля волны E_{0m} на бесконечности обращаются в нуль.

Нормированные поперечные волновые числа внутри ($0 \le r \le a, \ 0 \le \phi \le 2\pi$) и вне ($a \le r \le \infty, \ 0 \le \phi \le 2\pi$) проводника определяются формулами

$$x = \left(\frac{2\pi a}{\lambda}\right) \sqrt{\dot{\varepsilon}_1 \dot{\mu}_1 - \tilde{\beta}^2} , \qquad (4)$$

$$y = \left(\frac{2\pi a}{\lambda}\right) \sqrt{\dot{\varepsilon}_2 - \tilde{\beta}^2} , \qquad (5)$$

где

$$\dot{\varepsilon}_1 = \varepsilon_1 - j \frac{\sigma_1}{\omega \, \varepsilon_0} = \varepsilon_1 - j \tilde{\sigma}_1, \tag{6}$$

$$\begin{split} \tilde{\sigma}_1 &= \frac{\sigma_1}{\omega \, \epsilon_0} = 60 \lambda \sigma_1 \,, \\ \dot{\mu}_1 &= \mu_1 \end{split} \tag{7}$$

(магнитные потери не учитываются),

$$\dot{\varepsilon}_{2} = \varepsilon_{2} \left(1 - j \operatorname{tg} \delta_{2} \right) = \varepsilon_{2} - j 60\lambda \sigma_{2}, \qquad (8)$$
$$\varepsilon_{2} \ge 1, \quad \operatorname{tg} \delta_{2} = \frac{60\lambda \sigma_{2}}{\varepsilon_{2}} \ge 0,$$

$$\dot{\mu}_2 = \mu_2 = 1 , \qquad \qquad$$

где λ — длина волны в вакууме; $\tilde{\beta} = \dot{\beta}/k = \dot{\beta}/(2\pi/\lambda)$ — относительная комплексная постоянная распространения (комплексный коэффициент замедления); $\tilde{\beta} = \tilde{\beta}_1 - j\tilde{\beta}_2$, $\tilde{\beta}_1 \ge 1$, $\tilde{\beta}_2 \ge 0$.

Получим из точного дисперсионного уравнения (1) приближенное дисперсионное уравнение для волны E_{00} в области частот, где $|x| \gg 1$ и $|y| \gg 1$.

Комплексный аргумент $x = x_1 + jx_2$ в случае сильного скин-эффекта ($|x| \gg 1$) имеет вид [1; 2]

$$x \approx \frac{a}{\delta} \left(-1 + j \right), \tag{10}$$

здесь и ниже выполняется условие $a/\delta \gg 1$.

Величина

$$\delta = \frac{\lambda}{2\pi} \sqrt{\frac{2}{\tilde{\sigma}_1 \mu_1}}$$

есть толщина скин-слоя.

Например, для морской воды с параметрами $\sigma_1 = 5 (\text{Ом} \cdot \text{м})^{-1}$), $\mu_1 = 1$ на частоте $f = 30 \text{ к}\Gamma$ ц ($\lambda = 10^4 \text{ м}$) нормированная удельная проводимость $\tilde{\sigma}_1 = 60\lambda\sigma_1 = 3 \times 10^6$. Отсюда толщина скинслоя морской воды на частоте $f = 30 \text{ к}\Gamma$ ц составляет

$$\delta = \frac{10^4}{2\pi} \sqrt{\frac{2}{3 \times 10^6}} \ \text{m} \approx 1,2995 \ \text{m}.$$

При $a = R_3 = 6,375 \times 10^6$ м (радиус Земли) получаем

 $\frac{a}{\delta} \approx 4,906 \times 10^6 \gg 1.$

Известно [1; 2], что при большом комплексном аргументе (10) функция $F_0(x)$ принимает вид

$$F_0(x) \approx \frac{a}{\delta} (1+j). \tag{11}$$

Погрешность расчета по формуле (11) при $a/\delta \gg 1$ составляет единицы процентов и уменьшается с ростом a/δ .

На основании (6), (10), (11) левая часть дисперсионного уравнения (1) для волны E_{00} в области частот, где $|x| \gg 1$, примет вид

$$\dot{\varepsilon}_1 \frac{F_0(x)}{x^2} \approx \frac{\left(\tilde{\sigma}_1 - \varepsilon_1\right)}{2\frac{a}{\delta}} + j\frac{\left(\tilde{\sigma}_1 + \varepsilon_1\right)}{2\frac{a}{\delta}}.$$
(12)

Заметим, что в рассматриваемой области существенным является учет такого параметра проводника, как ε_1 – относительной диэлектрической проницаемости (Re($\dot{\varepsilon}_1$)). В области частот, где $|x| \gg 1$, $|y| \ll 1$, для металлических проводников величиной ε_1 по сравнению с $\tilde{\sigma}_1$ можно пренебречь [1; 2].

Используя асимптотические формулы для функций Ганкеля 1-го рода [6], получаем приближенное выражение для функции $\Phi_0(y)$ при большом значении комплексного аргумента y $(|y| \gg 1)$:

$$\Phi_0(y) \approx jy - \frac{1}{2}, \qquad (13a)$$

где $|y| \gg 1$.

(9)

Оценим погрешность формулы (13а). Полагая $y = y_1 + jy_2$ и разделяя действительную и мнимую части в (13а), находим

$$\operatorname{Re}\Phi_{0}\left(y\right)\approx-\left(y_{2}+\frac{1}{2}\right),\tag{136}$$

$$\operatorname{Im} \Phi_0(y) \approx +y_1, \qquad (13B)$$

где $|y| = \sqrt{y_1^2 + y_2^2} \gg 1$.

При y = 4 + j3 точные значения действительной и мнимой частей функции $\Phi_0(y)$, рассчитанные при помощи компьютерной программы [7], следующие:

 $\operatorname{Re}\Phi_{0}(y) = -3,4846042;$

 $\operatorname{Im} \Phi_0(y) = +4,0158843.$

По приближенным формулам (136), (13в) имеем:

$$\operatorname{Re}\Phi_{0}(y) = -3,50;$$

 $\text{Im} \Phi_0(y) = +4,00.$

Таким образом, при |y| = 5 погрешность расчета функции $\Phi_0(y)$ по формуле (13а) не превышает 0,5%. С ростом |y| погрешность монотонно уменьшается. Например, при y = 6 + j8 (|y| = 10) погрешность расчета не превышает 0,05% для $\operatorname{Re} \Phi_0(y)$ и 0,12% для $\operatorname{Im} \Phi_0(y)$.

Для случая, когда окружающая проводник среда является воздухом и $\dot{\varepsilon}_2 = 1$, дисперсионное

$$\frac{\left(\tilde{\sigma}_{1}-\varepsilon_{1}\right)}{2\frac{a}{\delta}}+j\frac{\left(\tilde{\sigma}_{1}+\varepsilon_{1}\right)}{2\frac{a}{\delta}}\approx\frac{\Phi_{0}\left(y\right)}{y^{2}},$$
(14)

где $y = y_1 + jy_2$, $a/\delta \gg 1$, $\Phi_0(y) = \operatorname{Re} \Phi_0(y) + j \operatorname{Im} \Phi_0(y)$.

Проведем вначале строгие алгебраические преобразования уравнения (14), а затем используем приближенные выражения (136), (13в) для Re $\Phi_0(y)$ и Im $\Phi_0(y)$ для области частот, где $|y| \gg 1$.

Разделяя действительную и мнимую части у функции $\Phi_0(y)/y^2$, стоящей в правой части (14), получаем:

$$\frac{\Phi_0(y)}{y^2} = \operatorname{Re}\frac{\Phi_0(y)}{y^2} + j\operatorname{Im}\frac{\Phi_0(y)}{y^2}, \qquad (15)$$

где

$$\operatorname{Re} \frac{\Phi_{0}(y)}{y^{2}} = \frac{\left(y_{1}^{2} - y_{2}^{2}\right)\operatorname{Re} \Phi_{0}(y) + 2y_{1}y_{2}\operatorname{Im} \Phi_{0}(y)}{\left(y_{1}^{2} + y_{2}^{2}\right)^{2}},$$
(16)

$$\operatorname{Im} \frac{\Phi_{0}(y)}{y^{2}} = \frac{\left(y_{1}^{2} - y_{2}^{2}\right)\operatorname{Im} \Phi_{0}(y) - 2y_{1}y_{2}\operatorname{Re} \Phi_{0}(y)}{\left(y_{1}^{2} + y_{2}^{2}\right)^{2}}.$$
(17)

Подставляя в уравнение (14) соотношения (15)-(17) и приравнивая соответственно действительные и мнимые части в левой и правой частях уравнения, получаем систему уравнений для определения величин y_1 и y_2 :

$$\frac{\left(y_{1}^{2}-y_{2}^{2}\right)\operatorname{Re}\Phi_{0}\left(y\right)+2y_{1}y_{2}\operatorname{Im}\Phi_{0}\left(y\right)}{\left(y_{1}^{2}+y_{2}^{2}\right)^{2}} = \frac{\left(\tilde{\sigma}_{1}-\varepsilon_{1}\right)}{2\frac{a}{\delta}}, \qquad (18)$$

$$\frac{\left(y_{1}^{2}-y_{2}^{2}\right)\operatorname{Im}\Phi_{0}\left(y\right)-2y_{1}y_{2}\operatorname{Re}\Phi_{0}\left(y\right)}{\left(y_{1}^{2}+y_{2}^{2}\right)^{2}} = \frac{\left(\tilde{\sigma}_{1}+\varepsilon_{1}\right)}{2\frac{a}{\delta}}. \qquad (19)$$

Разделив уравнение (18) на (19), получаем

$$\frac{\left(y_{1}^{2}-y_{2}^{2}\right)\operatorname{Re}\Phi_{0}(y)+2y_{1}y_{2}\operatorname{Im}\Phi_{0}(y)}{\left(y_{1}^{2}-y_{2}^{2}\right)\operatorname{Im}\Phi_{0}(y)-2y_{1}y_{2}\operatorname{Re}\Phi_{0}(y)} = \frac{\left(\tilde{\sigma}_{1}-\varepsilon_{1}\right)}{\left(\tilde{\sigma}_{1}+\varepsilon_{1}\right)}.$$
(20)

Уравнение (20) устанавливает связь между значениями y_1 и y_2 в зависимости от $\tilde{\sigma}_1$ и ϵ_1 в диапазоне частот, где скин-эффект сильный $(a/\delta \ge 10).$

При помощи (20) система уравнений (18), (19) преобразуется к более простой для последующего решения системе уравнений:

$$\operatorname{Re} \Phi_{0}(y) = \frac{\left(\tilde{\sigma}_{1} - \varepsilon_{1}\right)\left(y_{1}^{2} - y_{2}^{2}\right) - \left(\tilde{\sigma}_{1} + \varepsilon_{1}\right)2y_{1}y_{2}}{2\frac{a}{\delta}}, \qquad (21)$$

 $\operatorname{Im}\Phi_{0}(y) =$

$$=\frac{\left(\tilde{\sigma}_{1}+\varepsilon_{1}\right)\left(y_{1}^{2}-y_{2}^{2}\right)+\left(\tilde{\sigma}_{1}-\varepsilon_{1}\right)2y_{1}y_{2}}{2\frac{a}{\delta}}.$$
(22)

Разделив уравнение (21) на (22), имеем

$$\frac{\operatorname{Re} \Phi_{0}\left(y\right)}{\operatorname{Im} \Phi_{0}\left(y\right)} = \frac{\left(\tilde{\sigma}_{1} - \varepsilon_{1}\right)\left(y_{1}^{2} - y_{2}^{2}\right) - \left(\tilde{\sigma}_{1} + \varepsilon_{1}\right)2y_{1}y_{2}}{\left(\tilde{\sigma}_{1} + \varepsilon_{1}\right)\left(y_{1}^{2} - y_{2}^{2}\right) + \left(\tilde{\sigma}_{1} - \varepsilon_{1}\right)2y_{1}y_{2}}.$$
(23)

Введем обозначение

$$q = \frac{y_2}{y_1}.\tag{24}$$

Так как $y_{1,2} \ge 0$, то величина $q \ge 0$.

С учетом обозначения (24) уравнение (23) примет вид

$$\frac{\operatorname{Re}\Phi_{0}\left(y\right)}{\operatorname{Im}\Phi_{0}\left(y\right)} = \frac{\frac{\left(\tilde{\sigma}_{1}-\varepsilon_{1}\right)}{\left(\tilde{\sigma}_{1}+\varepsilon_{1}\right)}\left(1-q^{2}\right)-2q}{\left(1-q^{2}\right)+\frac{\left(\tilde{\sigma}_{1}-\varepsilon_{1}\right)}{\left(\tilde{\sigma}_{1}+\varepsilon_{1}\right)}2q}.$$
(25)

Используем приближенные выражения (136), (13в) для области частот, где $\left|y\right| = \sqrt{{y_1}^2 + {y_2}^2} \gg 1$. Из формул (136), (13в) следует:

$$\frac{\operatorname{Re}\Phi_{0}\left(y\right)}{\operatorname{Im}\Phi_{0}\left(y\right)}\approx-q-\frac{1}{2y_{1}},$$
(26)

где $|y| \gg 1$.

Подставляя (26) в (25), получаем уравнение для определения y_1 через q и параметры проводника $\tilde{\sigma}_1$ и ε_1 :

чину у примет вид

$$q + \frac{1}{2y_1} \approx -\frac{\frac{\left(\tilde{\sigma}_1 - \varepsilon_1\right)}{\left(\tilde{\sigma}_1 + \varepsilon_1\right)} \left(1 - q^2\right) - 2q}{\left(1 - q^2\right) + \frac{\left(\tilde{\sigma}_1 - \varepsilon_1\right)}{\left(\tilde{\sigma}_1 + \varepsilon_1\right)} 2q},$$
(27)

где $|y| \gg 1$.

Введем обозначение функции в правой части уравнения (27):

$$Q_{1}(q) = \frac{2q - \frac{\left(\tilde{\sigma}_{1} - \varepsilon_{1}\right)}{\left(\tilde{\sigma}_{1} + \varepsilon_{1}\right)} \left(1 - q^{2}\right)}{\left(1 - q^{2}\right) + \frac{\left(\tilde{\sigma}_{1} - \varepsilon_{1}\right)}{\left(\tilde{\sigma}_{1} + \varepsilon_{1}\right)} 2q}.$$
(28)

Из уравнения (27) находим

$$y_1 \approx \frac{1}{2\left[Q_1\left(q\right) - q\right]}.$$
 (29a)

Так как $y_2 = qy_1$, то из (29а) следует:

$$y_2 \approx \frac{q}{2\left[Q_1\left(q\right) - q\right]}.$$
(296)

Итак, из дисперсионного уравнения (1) для области частот, где $|x| \gg 1$ и $|y| \gg 1$, получены явные выражения для действительной (y_1) и мнимой (y_2) частей комплексного поперечного волнового числа $y = y_1 + jy_2$ через вспомогательную величину $q = y_2/y_1$ и параметры проводника ($\tilde{\sigma}_1$ и ϵ_1).

Установим теперь уравнение, определяющее qв зависимости от параметров проводника a, $\tilde{\sigma}_1$, μ_1 , ε_1 и частоты f.

Уравнение (22) с учетом обозначения (24) можно переписать в виде

$$\frac{\operatorname{Im}\Phi_{0}(y)}{y_{1}^{2}\left\{\left(1-q^{2}\right)+\frac{\left(\tilde{\sigma}_{1}-\varepsilon_{1}\right)}{\left(\tilde{\sigma}_{1}+\varepsilon_{1}\right)}2q\right\}}=\frac{\left(\tilde{\sigma}_{1}+\varepsilon_{1}\right)}{2\frac{a}{\delta}}.$$
(30)

Подставляя в (30) формулу (13в) для Im $\Phi_0(y)$ при $\sqrt{y_1^2 + y_2^2} \gg 1$ и используя обозначение (28), формулу (29а), получаем уравнение для определения величины *q*:

$$L_1(q) = \frac{\left(\tilde{\sigma}_1 + \varepsilon_1\right)}{4\frac{a}{\delta}},\tag{31}$$

где

$$L_{1}(q) = \frac{Q_{1}(q) - q}{\left(1 - q^{2}\right) + \frac{\left(\tilde{\sigma}_{1} - \varepsilon_{1}\right)}{\left(\tilde{\sigma}_{1} + \varepsilon_{1}\right)} 2q},$$

$$a/\delta \gg 1, \quad \sqrt{y_{1}^{2} + y_{2}^{2}} \gg 1, \quad y_{2} > 0.$$
(32)

Таким образом, в области частот, где безразмерные поперечные волновые числа велики $(|x| \gg 1, |y| \gg 1)$, решение дисперсионного уравнения (1) для волны E_{00} в комплексной плоскости аргументов $x = x_1 + jx_2$ и $y = y_1 + jy_2$ сведено к решению алгебраического уравнения (31) относительно q в действительной области $q \ge 0$.

Задавая параметры проводника ($a, \tilde{\sigma}_1, \mu_1, \varepsilon_1$) и частоту f, из уравнения (31) находим вспомогательную величину q. Действительная и мнимая части поперечного волнового числа x на основании (10) определяются формулами:

$$x_1 \approx -\frac{a}{\delta},$$
 (33a)

$$x_2 \approx \frac{a}{\delta}$$
, (336)

где $a/\delta \gg 1$.

Через вычисленную величину q и функцию $Q_1(q)$ действительная и мнимая части поперечного волнового числа y определяются формулами (29а) и (29б).

Из соотношения (5) при $\dot{\epsilon}_2 = 1$ находим [3; 4] действительную и мнимую части комплексного коэффициента замедления $\tilde{\beta} = \tilde{\beta}_1 - j\tilde{\beta}_2$ ($\tilde{\beta}_1$ — коэффициент замедления, $\tilde{\beta}_2$ — нормированный коэффициент затухания):

$$\tilde{\beta}_1 = \sqrt{\frac{1}{2} \left\{ \sqrt{T_1^2 + T_2^2} + T_1 \right\}},$$
(34a)

$$\tilde{\beta}_2 = T_2 / 2 \tilde{\beta}_1 , \qquad (345)$$

где

$$T_1 = 1 + \frac{\left(y_2^2 - y_1^2\right)}{\left(2\pi a/\lambda\right)^2},$$
(35a)

$$T_1 = 1 + \frac{\left(y_2^2 - y_1^2\right)}{\left(2\pi a/\lambda\right)^2}.$$
(356)

Установим теперь область частот, где справедливо уравнение (31).

Расчеты для проводника – морская вода и *a* = *R*₃ показывают, что приближенное значение корня уравнения (31) определяется формулой

$$q \approx \frac{\left(\tilde{\sigma}_{1} - \varepsilon_{1}\right)}{\left(\tilde{\sigma}_{1} + \varepsilon_{1}\right)} + \frac{\left(\tilde{\sigma}_{1}^{2} + \varepsilon_{1}^{2}\right)}{2\frac{a}{\delta}\left(\tilde{\sigma}_{1} + \varepsilon_{1}\right)}.$$
(36)

Подставляя (36) в (29а) и (29б), находим приближенные выражения для величин y_1 и y_2 :

$$y_1 \approx \frac{\frac{a}{\delta} \left(\tilde{\sigma}_1 + \varepsilon_1 \right)}{\left(\tilde{\sigma}_1^2 + \varepsilon_1^2 \right)},$$
(37a)

$$y_2 \approx \frac{\frac{a}{\delta} \left(\tilde{\sigma}_1 - \varepsilon_1\right)}{\left(\tilde{\sigma}_1^2 + \varepsilon_1^2\right)} + \frac{1}{2}.$$
(376)

Используя формулы (37а) и (37б), определяем диапазон длин волн, в котором модули поперечных волновых чисел велики ($|x| \gg 1$, $|y| \gg 1$) и справедливо уравнение (31):

$$\lambda_1 \le \lambda \le \lambda_2, \tag{38}$$

где

$$\lambda_1 = 5 \sqrt{\frac{32\pi^2 {\epsilon_1}^2 \mu_1 a^2}{\left(60\sigma_1\right)^3}} , \qquad (39)$$

$$\lambda_2 = \sqrt[3]{\frac{\pi^2 \mu_1 a^2}{375 \sigma_1}} \,. \tag{40}$$

Граничная длина волны λ_1 соответствует точке на дисперсионной кривой, где $y_1 = y_2 \gg 1$ и, соответственно, $\tilde{\beta}_1 \approx 1$; граничная длина волны λ_2 соответствует $|y| = \sqrt{y_1^2 + y_2^2} \approx 5$.

Ниже в таблицах и на рисунках приведены результаты расчетов основных характеристик (коэффициента замедления $\tilde{\beta}_1$ и коэффициента затухания β_2) волны E_{00} в цилиндрическом проводнике – морская вода с радиусом $a = R_3$ и двумя параметрами морской воды $\sigma_1 = 5 (\text{Ом} \cdot \text{м})^{-1}$ и $\sigma_1 = 1 (\text{Om} \cdot \text{м})^{-1}$).

1. Параметры проводника — морская вода $\varepsilon_1 = = 80$; $\mu_1 = 1$; $\sigma_1 = 5 (Om \cdot m)^{-1}$; $a = R_3 = 6,375 \times 10^6$ м (радиус Земли). Из (39), (40) находим граничные длины волн:

 $\lambda_1\approx 314~\text{m}; ~\lambda_2\approx 6000~\text{m}.$

Соответствующий диапазон частот, в котором $|x| \gg 1$ и $|y| \ge 5$, составляет интервал

0,05 МГц $\leq f \leq 0,9554$ МГц.

В таблице 1 приведены значения x_1 , x_2 , y_1 , y_2 , $\tilde{\beta}_1$, $\tilde{\beta}_2$, β_2 для $\sigma_1 = 5 (OM \cdot M)^{-1}$; $\mu_1 = 1$; $\varepsilon_1 = 80$ (морская вода) и $a = R_3 = 6,375 \times 10^6$ м в диапазоне частот 0,05 МГц $\leq f \leq 0,95$ МГц.

На крайних частотах диапазона (f = 0,05 МГц и f = 0,9554 МГц), где $|x| \gg 1$, $|y| \gg 1$, рассчитанные по разработанной методике основные характеристики волны E_{00} (волны Зоммерфельда) при $\sigma_1 = 5$ (Ом · м)⁻¹ совпадают с аналогичными величинами в [5]. Например, при f = 0,9554 МГц ($\lambda \approx 314$ м) значения $x_1, x_2, y_1, y_2, \tilde{\beta}_1, \tilde{\beta}_2, \beta_2$ таковы: $x_1 = -2,7685 \times 10^{+7}$; $x_2 = +2,7685 \times 10^{+7}$; $y_1 =$ = 294,13; $y_2 = 294,13$; $\tilde{\beta}_1 = 1$; $\tilde{\beta}_2 = 5,3 \times 10^{-6}$; $\beta_2 =$ $= 1 \times 10^{-7}$ м⁻¹.

На рис. 1, *а*, б приведены зависимости коэффициентов замедления ($\tilde{\beta}_1$) и затухания (β_2) волны E_{00} от частоты (0,05 МГц $\leq f \leq 0.9554$ МГц) для цилиндрического проводника радиуса $a = R_3 = 6,375 \times 10^6$ м и параметрами морской воды $\sigma_1 = 5$ (Ом · м)⁻¹; $\mu_1 = 1$; $\varepsilon_1 = 80$.

Из табл. 1 и рис. 1, *a*, б видно, что зависимости от частоты коэффициента замедления $\tilde{\beta}_1$ и коэффициента затухания β_2 представляют собой монотонные кривые. При этом коэффициент замедления незначительно отличается от единицы и с ростом частоты в рассматриваемом диапазоне 0,05 МГц $\leq f \leq 0.9554$ МГц уменьшается до единицы на крайней частоте диапазона f = 0.9554 МГц. Этой частоте при $\sigma_1 = 5 (\text{Ом} \cdot \text{м})^{-1}$ соответствует равенство модулей чисел $|x_1| = |x_2| = 2.7685 \times 10^7 \gg 1$ и чисел $y_1 = y_2 = 294.13 \gg 1$. Коэффициент затухания β_2 в рассматриваемом диапазоне увеличивается с ростом частоты от величины 3×10^{-10} (1/м) до величины 1×10^{-7} (1/м).

2. Параметры проводника — морская вода $\varepsilon_1 = 80$; $\mu_1 = 1$; $\sigma_1 = 1 (Om \cdot m)^{-1}$; $a = R_3 = 6,375 \times 10^6$ м (радиус Земли).

Из (39), (40) находим граничные длины волн: $\lambda_1 \approx 824$ м; $\lambda_2 \approx 10227$ м.

Соответствующий диапазон частот, в котором $|x| \gg 1$ и $|y| \ge 5$, составляет интервал

0,03 МГц $\leq f \leq$ 0,3640 МГц.

В таблице 2 приведены значения $x_1, x_2, y_1, y_2, \beta_1$, $\tilde{\beta}_2, \beta_2$ для $\sigma_1 = 1$ (Ом · м)⁻¹; $\mu_1 = 1$; $\varepsilon_1 = 80$ (морская вода меньшей солености) и $a = R_3 = 6,375 \times 10^6$ м в диапазоне частот 0,03 МГц $\leq f \leq 0,36$ МГц.

На крайней частоте f = 0,3640 МГц ($\lambda \approx 824$ м), где $\tilde{\beta}_1 = 1$, основные характеристики волны E_{00} (волны Зоммерфельда) при $\sigma_1 = 1$ (Ом · м)⁻¹ таковы:

$$\begin{split} x_1 &= -7,6420 \times 10^{+6} \; ; \quad x_2 = +7,6420 \times 10^{+6} \; ; \\ y_1 &= 154,32 \; ; \quad y_2 = 154,32 \; ; \\ \beta_2 &= 7,6 \times 10^{-8} \; \text{m}^{-1}. \end{split}$$

На рис. 2, *a*, б приведены зависимости коэффициентов замедления ($\tilde{\beta}_1$) и затухания (β_2) волны E_{00} от частоты (0,03 МГц $\leq f \leq$ 0,3640 МГц) для цилиндрического проводника радиуса $a = R_3 = 6,375 \times 10^6$ м и параметрами морской воды $\sigma_1 = 1$ (Ом · м)⁻¹; $\mu_1 = 1$; $\varepsilon_1 = 80$.

Из табл. 2 и рис. 2, *a*, б видно, что характер зависимостей от частоты коэффициентов замедления $\tilde{\beta}_1$ и затухания β_2 при $\sigma_1 = 1$ (Ом · м)⁻¹ (морская вода меньшей солености) такой же, как для $\sigma_1 = 5$ (Ом · м)⁻¹ (морская вода большей солености).

Из сравнения рис. 1, *a*, б и рис. 2, *a*, б видно влияние параметра морской воды σ_1 на основные характеристики волны E_{00} в цилиндрическом проводнике большого радиуса. При увеличении σ_1 область частот, в которой может распространяться волна Зоммерфельда ($\tilde{\beta}_1 \ge 1$), сдвигается в сторону более низких частот. Так, например, при $\sigma_1 = 5$ (Ом · м)⁻¹ граничная частота, при которой прекращается распространение волны E_{00} , равна 0,9554 МГц, а при $\sigma_1 = 1 (Oм \cdot m)^{-1}$ она понижается до величины 0,3640 МГц.

Сравнение зависимостей от частоты коэффициента затухания β_2 при различных значениях σ_1 (рис. 1, б, рис. 2, б) показывает, что при одинаковой частоте f в области, где модули поперечных волновых числе велики ($|x| \gg 1, |y| \gg 1$), затухание тем больше, чем меньше σ_1 .

Таким образом, разработана методика решения дисперсионного уравнения для волны E_{00} (волны Зоммерфельда) в цилиндрическом проводнике большого радиуса *a* с конечной проводимостью σ_1 в области частот, где поперечные волновые числа внутри и вне проводника велики $(|x| \gg 1 \text{ и } |y| \gg 1).$

По разработанной методике в диапазоне частот ($f \leq 1$ МГц) произведены расчеты основных характеристик волны E_{00} (комплексных поперечных волновых чисел $x = x_1 + jx_2$, $y = y_1 + jy_2$, коэффициентов замедления $\tilde{\beta}_1$ и затухания β_2) в цилиндрическом проводнике – морская вода с радиусом Земли и двумя параметрами морской воды $\sigma_1 = 5$ (Ом · м)⁻¹; $\sigma_1 = 1$ (Ом · м)⁻¹.

Таолица 1	Таблица	1
-----------	---------	---

Значения x_1 , x_2 , y_1 , y_2 , $\tilde{\beta}_1$, $\tilde{\beta}_2$, β_2 для $\sigma_1 = 5$ (Ом · м)⁻¹; $\mu_1 = 1$; $\varepsilon_1 = 80$ (морская вода) и $a = R_3 = 6,375 \times 10^6$ м

<i>f</i> , МГц	x_1	x_2	y_1	y_2	$\tilde{\beta}_1$	$ ilde{eta}_2$	β ₂ , 1/м
0,05	-6,3333E+06	6,3333E+06	3,5458	3,9840	1 + 3,702 E-08	3,17E-07	3,32E-10
0,10	-8,9566E+06	8,9566E+06	9,9641	10,4384	1 + 2,715E-08	5,83E-07	1,22E-09
0,15	-1,0970E+07	1,0970E+07	18,2916	18,7734	1 + 2,226E-08	8,56E-07	2,69E-09
0,20	-1,2667E+07	1,2667E+07	$28,\!1573$	28,6386	1 + 1,917E-08	1,13E-06	4,74E-09
0,25	-1,4162E+07	1,4162E+07	39,3499	39,8261	1 + 1,692E-08	1,41E-06	7,36E-09
0,30	-1,5513E+07	1,5513E+07	51,7273	$52,\!1950$	1 + 1,515E-08	1,68E-06	1,06E-08
0,35	-1,6756E+07	1,6756E+07	65,1857	65,6413	1 + 1,365E-08	1,96E-06	1,44E-08
0,40	-1,7913E+07	1,7913E+07	79,6444	80,0847	1 + 1,233E-08	2,24E-06	1,87E-08
0,45	-1,9000E+07	1,9000E+07	95,0388	$95,\!4602$	1 + 1,112E-08	2,51E-06	2,37E-08
0,50	-2,0028E+07	2,0028E+07	111,3153	111,7141	1 + 9,984E-09	2,79E-06	2,92E-08
0,55	-2,1005E+07	2,1005E+07	128,4287	128,8012	1 + 8,890 E-09	3,07E-06	3,53E-08
0,60	-2,1939E+07	2,1939E+07	146,3401	146,6824	1 + 7,820E-09	3,34E-06	4,20E-08
0,65	-2,2835E+07	2,2835E+07	165,0157	165,3236	1 + 6,759E-09	3,62E-06	4,93E-08
0,70	-2,3697E+07	2,3697E+07	184,4256	184,6949	1 + 5,697E-09	3,90E-06	5,72E-08
0,75	-2,4529E+07	2,4529E+07	$204,\!5432$	204,7694	1 + 4,626E-09	4,18E-06	6,56E-08
0,80	-2,5333E+07	2,5333E+07	225,3446	225,5232	1 + 3,539E-09	4,45E-06	7,46E-08
0,85	-2,6113E+07	2,6113E+07	246,8082	246,9345	1 + 2,432E-09	4,73E-06	8,42E-08
0,90	-2,6870E+07	2,6870E+07	268,9144	268,9836	1 + 1,301E-09	5,01E-06	9,44E-08
0,95	-2,7606E+07	2,7606E+07	291,6452	291,6522	1 + 1,410E-10	5,29E-06	1,05E-07

Таблица 2

Значения x_1 , x_2 , y_1 , y_2 , $\tilde{\beta}_1$, $\tilde{\beta}_2$, β_2 для $\sigma_1 = 1$ (Ом · м)⁻¹; $\mu_1 = 1$; $\varepsilon_1 = 80$ и $a = R_3 = 6,375 \times 10^6$ м

<i>f</i> , МГц	x_1	x_2	y_1	y_2	$\tilde{\beta}_1$	$ ilde{eta}_2$	β ₂ , 1/м
0,030	-2,1939E+06	2,1939E+06	3,6834	4,1230	1 + 1,07E-07	9,47E-07	5,95E-10
0,045	-2,6870E+06	2,6870E+06	6,7349	7,1977	1 + 8,93E-08	1,34E-06	1,27E-09
0,060	-3,1027E+06	3,1027E+06	10,3560	10,8275	1 + 7,78E-08	1,75E-06	2,20E-09
0,075	-3,4689E+06	3,4689E+06	14,4666	14,9403	1 + 6,95E-08	2,16E-06	3,39E-09
0,090	-3,8000E+06	3,8000E+06	19,0137	$19,\!4857$	1 + 6,29E-08	2,57E-06	4,84E-09
0,105	-4,1044E+06	4,1044E+06	23,9588	$24,\!4262$	1 + 5,75E-08	2,98E-06	6,55E-09
0,120	-4,3878E+06	4,3878E+06	29,2720	29,7324	1 + 5,29E-08	3,39E-06	8,52E-09
0,135	-4,6540E+06	4,6540E+06	34,9295	35,3805	1 + 4,88E-08	3,80E-06	1,08E-08
0,150	-4,9058E+06	4,9058E+06	40,9115	41,3509	1 + 4,51E-08	4,22E-06	1,33E-08
0,165	-5,1452E+06	5,1452E+06	47,2015	47,6270	1 + 4,16E-08	4,63E-06	1,60E-08
0,180	-5,3740E+06	5,3740E+06	53,7851	54,1945	1 + 3,83E-08	5,05E-06	1,90E-08
0,195	-5,5934E+06	5,5934E+06	60,6499	61,0408	1 + 3,51E-08	5,46E-06	2,23E-08
0,210	-5,8046E+06	5,8046E+06	67,7849	68,1548	1 + 3,20E-08	5,88E-06	2,58E-08
0,225	-6,0083E+06	6,0083E+06	75,1804	75,5269	1 + 2,89E-08	6,29E-06	2,96E-08
0,240	-6,2053E+06	6,2053E+06	82,8275	83,1480	1 + 2,59E-08	6,71E-06	3,37E-08
0,255	-6,3963E+06	6,3963E+06	90,7185	91,0103	1 + 2,29E-08	7,12E-06	3,80E-08
0,270	-6,5818E+06	6,5818E+06	98,8460	99,1065	1 + 1,99E-08	7,54E-06	4,26E-08
0,285	-6,7621E+06	6,7621E+06	107,2034	107,4298	1 + 1,68E-08	7,95E-06	4,75E-08
0,300	-6,9378E+06	6,9378E+06	115,7847	115,9743	1 + 1,37E-08	8,37E-06	5,26E-08
0,315	-7,1091E+06	7,1091E+06	124,5844	124,7340	1 + 1,06E-08	8,79E-06	5,80E-08
0,330	-7,2764E+06	7,2764E+06	133,5971	133,7039	1 + 7,40E-09	9,20E-06	6,36E-08
0,345	-7,4399E+06	7,4399E+06	142,8181	142,8790	1 + 4,15E-09	9,62E-06	6,95E-08
0,360	-7,6000E+06	7,6000E+06	152,2428	$152,\!2548$	1 + 8,39E-10	1,00E-05	7,56E-08

Список литературы

- Об основной электромагнитной волне в однопроводной линии в слабопоглащающей среде / Ю.А. Иларионов [и др.] // Радиотехника и электроника. 2007. Т. 52. № 2. С. 152–156.
- Иларионов Ю.А., Ермолаев А.И. Методика исследования волн Зоммерфельда в однопроводных направляющих структурах // Антенны. 2007. № 11. С. 73-85.
- Иларионов Ю.А. Ермолаев А.И. Распределение электромагнитного поля по поперечному сечению для волны E₀₀ в однопроводной линии // Физика волновых процессов и радиотехнические системы. 2009. Т. 12. № 1. С. 27–33.
- Астраханцев К.Г., Ермолаев А.И., Иларионов Ю.А. Исследование распределения электромагнитного поля вол-

ны E_{00} по поперечному сечению однопроводной линии // Антенны. 2011. № 1. С. 51–56.

- Иларионов Ю.А., Ермолаев А.И., Кукушкин А.В. Волна Зоммерфельда E₀₀ в цилиндрическом проводнике большого радиуса // Радиотехника и электроника. 2012. Т. 57. № 4. С. 413-417.
- Абрамовиц М., Стиган И. Справочник по специальным функциям с формулами, графиками и математическими таблицами. М.: Наука, 1979. 832 с.
- Иларионов Ю.А., Маркова С.А., Сморгонский В.Я. Вычисление функций Бесселя первого и второго рода от комплексного аргумента; ГФАП, № П001416. М.: НИВЦ МГУ, 1975. С. 1–5.

Calculation of phase coefficient and attenuation coefficient for Sommerfeld E_{00} wave in a conductor of large radius

M.V. Koltsov, Yu.A. Ilarionov

Using the developed method for finding a solution to the dispersion equation for E_{00} wave (Sommerfeld wave) in a cylindrical conductor of large radius with finite conductivity the dependences of phase coefficient and attenuation coefficient on frequency ($f \le 1$ MHz) are calculated for the cylinder with radius of the Earth and material parameters of sea water ($\sigma_1 = (1 \div 5)$ (Ohm \cdot m)⁻¹).

Keywords: phase and attenuation coefficients, Sommerfeld wave, conductor.