Физика волновых процессов и радиотехнические системы

УДК 621.385.623

Формирование пространственно-временных структур и хаотических режимов ансамблем автогенераторов в двумерном волновом поле

С.П. Чернявский

Челябинский государственный университет 454001, Российская Федерация, г. Челябинск ул. Братьев Кашириных, 129

Представлены результаты исследования формирования структур и хаотических режимов при помощи численного моделирования нелинейной колебательной системы. Проведено сравнение режимов работы, формирующих пространственно-временную структуру, показан путь перехода к хаотическому режиму колебаний.

Ключевые слова: численное моделирование, пространственно-временные структуры, хаотические режимы колебаний, ансамбль автогенераторов, двумерное волновое поле.

Исследования, направленные на изучение колебаний в активных распределенных системах при наличии активных элементов, представляют интерес для различных прикладных задач [1]. Эффективным методом исследования динамики нелинейных систем различной природы является построение численных моделей. При этом наряду с моделями, разработанными для расчета конкретных систем, представляют интерес достаточно абстрактные модели для исследования общих закономерностей [2; 3].

Цель работы — исследование образования пространственно-временных структур и режимов динамического хаоса в процессе самосогласованного взаимодействия ансамбля активных осцилляторов с волновым полем.

Дискретная модель волнового поля представляет собой двумерную решетку связанных осцилляторов. Динамика решетки описывается системой уравнений в конечных разностях:

$$\begin{aligned} &u(x,y,t+1) = a_1 u(x,y,t) - a_2 u(x,y,t-1) + \\ &+ b W(t,x\pm 1,y\pm 1) + g F(x,y,t), \end{aligned}$$

где

$$W(x \pm 1, y \pm 1, t) = u(x - 1, y, t) + u(x + 1, y, t) +$$

+ $u(x, y - 1, t) + u(x, y + 1, t);$

u(x, y, t) – функция дискретных аргументов, изменяющихся с единичным шагом, определяющая состояние поля в точке с координатами x, y в момент времени t; g – коэффициент связи волнового поля с автогенераторами; F(x, y, t) – функция, описывающая действие осцилляторов на поле:

$$F(x, y, t) = \sum_{n=1}^{N} \delta(x - x(n))\delta(y - y(n))\Delta z(n, t),$$
(2)
где $\Delta z(n, t) = z(n, t) - z(n, t - 1),$

$$\delta(s) = \begin{cases} 1, \ s = 0, \\ 0, \ s \neq 0, \end{cases}$$

z(n,t) описывает состояние осциллятора в точке с координатами x(n), y(n) в момент времени t.

Коэффициенты a_1 и a_2 уравнения (1) имеют следующий вид:

$$a_1 = 2(2v^2 - 1) \exp(-\gamma),$$

$$a_2 = \exp(-2\gamma),$$

$$b = v^2 \exp(-\gamma),$$

(3)

где *v* – фазовая скорость волны; *γ* – декремент затухания.

Волновое поле, описываемое уравнением (1), представляет собой решетку осцилляторов. Пространственные координаты изменяются в области $0 \le x \le L$, $0 \le y \le H$ причем (L > H). Для продольной координаты x было принято периодическое условие u(0, y) = u(L, y). Верхняя граница волнового поля подвергается модуляции следующим образом:

$$f(x) = A\cos^4(\pi x / \lambda),$$

в общем случае для нее приняты нулевые граничные условия u(x, H, t) = 0. Для нижней границы: u(x, 0, t) = u(x, 1, t). При этом длина волны

модуляции границы кратна длине области по оси x, $L = K_b \lambda$. Данные ограничения позволяют представить область волнового поля в виде боковой поверхности цилиндра с высотой H.

Динамика осциллятора, взаимодействующего с полем в точке с координатами x(n), y(n), описывается уравнением:

$$\begin{aligned} & z(n, t+1) = d_1(z)z(n, t) - \\ & -d_2(z)z(n, t-1) + g \,\Delta u(x(n), y(n), t), \end{aligned} \tag{4}$$
 rge
$$\Delta u(x(n), y(n), t) =$$

= u(x(n), y(n), t) - u(x(n), y(n), t - 1).

Коэффициенты d_1 и d_2 этого уравнения нелинейно зависят от состояния осциллятора:

$$d_1 = 2 \exp(\varepsilon(1 - \alpha z^2(n, t))) \cos(\beta),$$

$$d_2 = \exp(2\varepsilon(1 - \alpha z^2(n, t))).$$

При малой нелинейности параметров ε << 1, εα << 1 уравнение (4) переходит в дискретную модификацию уравнения Ван-дер-Поля, рассмотренную в [4]. Параметр β определяет частоту колебаний осциллятора.

Частоты мод волнового поля в области без модуляции границ определяются из решения краевой задачи для волнового уравнения с непрерывными координатами следующим образом:

 $\beta_{n.m} = v \sqrt{(2\pi n / L)^2 + (\pi (2m + 1) / H)^2}.$

Зависимость (*n*, *m*) – моды от пространственных переменных – имеет следующий вид:

$$u_{n.m}(x,y) = \frac{2}{\sqrt{LH}} \sin\left(\frac{2\pi}{L}nx\right) \times \\ \times \sin\left(\frac{\pi}{2H}(2m+1)y\right).$$
(5)

Ансамбль автогенераторов представляет собой фиксированный набор N_s -сгустков, содержащих N_b -осцилляторы. Такой набор был расположен

вдоль колебательного поля. Координаты по оси y центров групп равны h. Расстояние между группами по оси x кратно длине волны. Каждый сгусток занимает прямоугольную область поля размером N_x узлов по оси x и N_y узлов по оси y.

Для идентификации стационарного режима колебаний была использована проекция $P_m(t)$ на семейство ортогональных функций (5):

$$P_m(t) = \sqrt{\frac{2}{H}} \sum_{y=0}^{H-1} u(x_0, y, t) \sin\left(\frac{\pi}{2H}(2m+1)y\right).$$

При исследовании колебательных режимов степень упорядоченности поля по координатам и времени оценивается значением параметра *E* [5]:

$$E = \sum_{n=1}^{Ns-1} S(n) LnS(n) / (Ns-1),$$

где *S*(*n*) – спектральная плотность, нормированная условием:

$$\sum_{n=1}^{Ns-1} S(n) = Ns - 1$$

E = 0 — для белого шума, при S(n) = 1. Для синусоиды — E = 1. Граница, позволяющая гово-

рить о наличии режима динамического хаоса, имеет значение $E \approx 0.5$.

Анализ спектральных характеристик колебаний проводился по реализации функции $u(x_i, y, t)$, где y = H - 2, $i = 1, 2, ..., M_t$, где $M_t = 21$. Записи состояния поля по времени объема V_t проводили в интервале $T - V_t$, T, где T – полное время вычисления эволюции системы. По спектрам M_t реализаций $S_{t,i}(n)$ находили реализацию с максимальной мощностью:

$$P_t = \max_{1 \le i \le M_t} \frac{1}{(V_t - 1)^2} \sum_{n=1}^{V_t - 1} S_{t,i}(n).$$

Спектральные свойства волнового режима $S_t(n)$ определяла спектральная плотность этой реализации. Номер гармоники с максимальным значением спектра n_{\max} определял частоту колебаний $\beta_u = 2\pi n_{\max} / V_t$.

Приведенные ниже результаты получены при постоянном значении скорости волны v = 0.7 и значений параметров осцилляторов $\varepsilon = 0.001$, $\alpha = 0.7$. На верхней границе поля отсутствовала модуляция (A = 0). Значения варьируемых параметров приведены в табл. 1. На рис. 1 изобра-

жены графики амплитудных огибающих данной серии.

Как мы видим, набольшую амплитуду, при сохранности структуры имеет волновой режим 5.

Рассмотрим процесс перехода системы от устойчивых колебаний к режиму динамического хаоса. Запишем функцию Δu из уравнения (4) в виде:

$$\Delta u(x(n), y(n), t) = u(x(n), y(n), t) - u(x(n-1), y(n-1), t-1).$$
(6)

Для волнового режима 5 модифицируем воздействие поля на осцилляторы согласно (6).

Полученный колебательный режим, представленный на рис. 2, показывает, что уравнение (6) разрушает полученную структуру. Усилим этот процесс и увеличим коэффициент связи между полем и осцилляторами g = 0.09. Получим колебания, изображенные на рис. 3. Данный процесс не является стационарным, поэтому не могут быть надежно оценены его спектральные характеристики и энтропия.

В работе [6] делается вывод о возможности применения модуляции границы двумерного волнового поля для снижения пространственной регулярности волнового режима. Однако модуляция границы также участвует в формировании стационарного процесса. Для варианта, полученного на рис. 3, введем модуляцию верхней границы поля A = 10. Амплитудная огибающая полученного режима представлена на рис. 4. Таблица 2 демонстрирует параметры данного колебательного режима. Видно, что пространственная энтропия полученного режима удовлетворяет заявленному параметру $E \approx 0.5$. На рис. 5 и 6 изображены его пространственный спектр и энтропия соответственно.

Сравнение колебательных режимов, образующих пространственно-временные структуры, показывает, что на основе (2) невозможно получить режим колебаний такой же высокой амплитуды, как режим в [6]. Предложенный способ перехода системы к хаотическому режиму, может быть использован для получения хаотических сигналов с различными конфигурациями спектра и энтропии. Полученный хаотический режим можем быть использован в методах маскировки информации [7].

Таблица 1

	1	2	3	4	5	6
g	0.12	0.08	0.09	0.08	0.05	0.03
N_x	5	5	8	10	10	15
Ny	5	5	8	10	10	15

Таблица 2

ResBet	betF	Entr	Power	VonA	spEntr	saPower
0.2000	0.2420	0.7042	49.0691	11.0000	0.5316	186.3251

Список литературы

- Скотт Э. Нелинейная наука: рождение и развитие когерентных структур. М.: Физматлит, 2007. 560 с.
- Корниенко В.Н., Привезенцев А.П. Многоволновое взаимодействие ансамбля автогенераторов в двумерном волновом поле с неоднородной границей // Радиотехника и электроника. 2010. Т. 55. № 7. С. 801-807.
- Корниенко В.Н, Привезенцев А.П. Формирование пространственно-временных структур в системе активная среда – волновое поле в области с полупрозрачной границей // Радиотехника и электроника. 2011. Т. 56. № 4. С. 417-422.
- ДВ-осцилляторы, порождаемые томсоновскими автоколебательными системами / В.В. Зайцев [и др.] // Физика

волновых процессов и радиотехнические системы. 2008. Т. 11. № 4. С. 98-103.

- Корниенко В.Н., Привезенцев А.П. Порядок и хаос в динамике интенсивного потока пространственного заряда. Saarbrъcken: LAP Lambert Academic Publishing, 2012. 112 с.
- Корниенко В.Н, Привезенцев А.П. Особенности многоволновой самосогласованной динамики ансамбля автогенераторов и поля в прямоугольной области // Радиотехника и электроника. 2013. Т. 58. № 7. С. 691-698.
- Зайцев В.В., Зайцев О.В. Способ защиты информации с использованием алгоритма генерации хаотических колебаний // Вестник СамГУ. Естественнонаучная серия. 2006. Т. 49. № 9. С. 66-71.

Formation of space-time structures and chaotic modes by ensemble of the self-oscillators in two-dimensional wave field

S.P. Chernyavskiy

The research results of formation of structures and chaotic modes are presented on the basis of the numerical simulation of nonlinear oscillatory system The modes forming of space-time structures are compared. The way of transition to chaotic mode of oscillations is showed.

Keywords: numerical modeling, spatial-temporal structures, chaotic oscillation regimes, ensemble oscillators, twodimensional wave field.