2015 г.

Физика волновых процессов и радиотехнические системы

УДК 537.876+621.39

Влияние угла раскрыва плоских коротких щелевых антенн микроволнового диапазона на их излучательные характеристики

В.П. Заярный¹, С.А. Парпула¹, В.С. Гирич¹, И.Н. Пономарев²

 ¹ Волгоградский государственный технический университет 400005, Российская Федерация, г. Волгоград пр. им. В.И. Ленина, 28
 ² Волгоградский государственный университет 400062, Российская Федерация, г. Волгоград

Университетский пр., 100

Изучались характеристики плоских симметричных щелевых антенн осевого излучения, размеры которых соизмеримы с длиной волны излучения ($\lambda = 30$ мм), имевших линейно расширяющийся раскрыв. При этом теоретически рассчитаны, экспериментально измерены и проанализированы диаграммы направленности исследовавшихся антенн для углов раскрыва 30°, 60°, 90° и 120°. Получено хорошее согласование экспериментально измеренных диаграмм направленности исследовавшихся антенн с разработанными математическими моделями на частоте 10 ГГц.

Ключевые слова: плоская щелевая антенна, излучатель, диаграмма направленности, микроволновый диапазон, половинная мощность.

В настоящее время продолжается разработка и исследование новых образцов антенн и антенных устройств, которые являются важнейшими функциональными звеньями в радиотехнических системах (РТС). Учитывая существующую тенденцию к исследованию микроволнового диапазона и к миниатюризации РТС, разработка новых антенн с минимизацией их размеров и исследование их электродинамических и излучательных характеристик представляется важным и актуальным.

В данной работе теоретически и экспериментально исследовались диаграммы направленности (ДН) плоских симметричных антенн осевого излучения с линейно изменяющимся раскрывом (рис. 1), длина которых L была соизмерима с длиной волны излучения. Исследования проводились на частоте $f_0 = 10$ ГГц (длина волны $\lambda_0 = 30$ мм), а угол раскрыва антенн изменялся в пределах от 30° до 120° с интервалом 30°. Изменение угла раскрыва антенн производилось с целью изучения его влияния на форму ДН исследовавшихся антенн при их длине, соизмеримой с длиной волны излучения. В данном случае измерение ДН производилось для антенн, длина которых $L = 1\lambda_0 = 30$ мм (рис. 1), а угол раскрыва α имел одно из значений в указанных пределах. Мощность и частота излучения при этом оставались неизменными. Измерения проводились на установке, описанной в [1; 2].

Расчет диаграмм направленности для исследовавшихся плоских коротких симметричных антенн, у которых изменение поперечного сечения раскрыва является линейным, производилось с использованием обобщенных модельных представлений, приведенных в [1], модифицированных для случая коротких антенн. В этом случае шаг увеличения ширины щели нерегулярной направляющей структуры (раскрыва антенны [1]) выбирался согласно условию:

$$w_n - w_{n-1} = w_{n+1} - w_n = \Delta w < \frac{\lambda_0}{4}, \tag{1}$$

где w_n – ширина щели *n*-го регулярного участка направляющей структуры антенны, Δw – шаг увеличения ширины щели нерегулярной направляющей структуры. Это условие оказалось вполне приемлемым для случая коротких антенн. При этом результирующее поле в дальней зоне пространства будет определяться суммированием вклада в излучение, вносимого каждым регулярным участком, согласно выражению [1]:

$$E(\theta, \phi) = \sum_{n=1}^{N} E_n(\theta, \phi), \qquad (2)$$

ах. где $E_n(\theta, \phi)$ — вклад в поле дальней зоны а- *n*-м участком, θ , ϕ — угловые координаты в © Заярный В.П., Парпула С.А., Гирич В.С., Пономарев И.Н., 2015

2

Рис. 1. Внешний вид исследовавшихся антенн: 1 – симметричная щелевая линия; 2 – линейно расширяющийся раскрыв; 3 – питающая микрополосковая линия; 4 – коаксиальный разъем

Рис. 2. Рассчитанные диаграммы направленности исследуемых антенн длиной L=30 мм, для случаев: *a*) $\alpha = 60^{\circ}$; б) $\alpha = 90^{\circ}$; *b*) $\alpha = 120^{\circ}$

Е-плоскости и *H*-плоскости, соответственно. Условие постоянства мощности, проходящей через каждый регулярный участок направляющей структуры антенны также сохраняется:

$$P_{n-1} = P_n = P_{n+1} = const. \tag{3}$$

Мощность, проходящая вдоль *n*-го участка регулярной структуры, определяется согласно формуле

$$P_n = \frac{V_n^2}{Z_n},\tag{4}$$

где V_n — разность потенциалов на *n*- м регулярном участке, а Z_n — его волновое сопротивление. Выражение (2), с учетом (3), (4), заменив V_n на поперечную составляющую поля регулярной симметричной щелевой линией (СЩЛ) и положив $P_n = 1$, можно записать [1]:

$$E(\theta,\phi) = \sum_{n=1}^{N} \sqrt{Z_n} E_{0n}(\theta,\phi), \qquad (5)$$

где E_{0n} — поле излучения *n*-го регулярного участка, которое может быть определено по какой-либо модели антенны с щелью постоянной ширины, а Z_n определяется по формуле [3]:

$$Z_n = \frac{60\pi^2}{\ln\left(\frac{2H}{w} + \sqrt{\left(\frac{2H}{w}\right)^2 - 1}\right)}.$$
(6)

Процедура ступенчатой аппроксимации может быть автоматизирована или произведена вручную. В данном случае расчеты показывают, что для изучаемых коротких антенн результаты хорошо сходятся, когда значение $\Delta w = l_0 / 16$.

Поперечная компонента электрической составляющей напряженности электромагнитного поля для *n*-го регулярного участка антенны определяется следующим выражением [4]:

$$\begin{split} E_{\theta}(\theta,\phi) &= \frac{j\omega\varepsilon w \sin\phi e^{-jk_{0}r}}{4\pi^{2}r} \times \\ &\times \int_{-w/2}^{w/2} \frac{e^{jk_{0}z'\cos\theta}}{\sqrt{\left(\frac{w}{2}\right)^{2} - z^{2}}} dz' \int_{0}^{L} e^{jk_{0}x'\sin\theta\cos\phi} \times \\ &\times e^{k_{x}x'} \left[1 + e^{j\frac{\pi}{4}}F\left(v\sqrt{\frac{\pi}{2}}\right) + \frac{\sqrt{2}e^{-j\frac{\pi}{4}}}{\pi} \frac{e^{-j\frac{\pi}{2}v^{2}}}{v} \right] dx'. \end{split}$$

Здесь $F(v) = \int_{0}^{0} e^{-jt^2} dt$ — интеграл Френеля,

Рис. 3. Экспериментально измеренная диаграмма направленности для антенны с углом раскрыва 30°

$$\upsilon = \sqrt{\frac{2k_0 x' \sin \theta \left(1 + \cos \phi\right)}{\pi}}.$$

 ω — частота электромагнитных колебаний на входе антенны, ε — диэлектрическая проницаемость, k_0 — волновое число, r — расстояние до рассматриваемой точки в дальней зоне (в нашем случае r = 3 м — расстояние от передающей, до приемной антенны), x и z — продольная и поперечная координаты направляющей структуры антенны (соответственно x' и z' — параметры интегрирования), j — мнимая единица, t время.

Построение диаграмм направленности в случае постоянной ширины щели (для регулярных участков) в плоскостях E и H производится нормированием результатов при $\phi = \pi - для E$ -плоскости и $\theta = \pi / 2 - для H$ -плоскости.

На рис. 2, a-s приведены диаграммы направленности, полученные в результате моделирования с использованием приведенных выше формул (в *E*-плоскости) для случая, когда длина антенны L = 30 мм, а углы раскрыва антенны имели значения 60°, 90° и 120°. Выявлено, что при приближении угла раскрыва α к значению 30°, форма ДН существенно искажалась, что,

вероятно, свидетельствует о достижении границы применимости разработанной математической модели.

Из графиков, приведенных на рис. 2, видно, что при увеличении угла раскрыва α исследовавшихся антенн главный лепесток их ДН сужается. Его ширина по уровню половинной мощности составляет: для случая $\alpha = 60^{\circ}-52^{\circ}$, для случая $\alpha = 90^{\circ}-26^{\circ}$, а для случая $\alpha = 120^{\circ}-16^{\circ}$. Следует также отметить, что в данном случае уровень боковых лепестков (УБЛ) не превышает значения 0,05 от максимального значения мощности излучения в направлении главной оси (при $\theta = 0$).

Для проведения экспериментальных исследований был изготовлен ряд натурных образцов подобных антенн (рис. 1), у которых угол раскрыва α также изменялся в пределах $30^{\circ}-120^{\circ}$ с интервалом 30° . Питание антенн производилось через коаксиальный разъем аналогично питанию антенн, описанных в [5]. Проектирование исследовавшихся антенн для достижения требуемых электродинамических свойств производилось с учетом основных положений, изложенных в [6-8].

Рис. 4. Экспериментально измеренная диаграмма направленности для антенны с углом раскрыва 60°

Рис. 6. Экспериментально измеренная диаграмма направленности для антенны с углом раскрыва 120°

На рис. 3-6 приведены экспериментально измеренные диаграммы направленности для исследуемых антенн при углах раскрыва, соответственно, 30°, 60°, 90° и 120°. При этом, исходя из приблизительной симметрии ДН в плоскостях E и H (асимметрия, с учетом статистических данных, имела место в пределах 4°), на рисунках левые половины ДН приведены для плоскости H, а правые – для плоскости E.

Во всех случаях ширина ДН в плоскости Н получалась несколько шире, чем в плоскости Е. Из графиков видно, что у экспериментально полученных ДН вершина главного лепестка более протяженная и пологая, чем в случае расчетных ДН, что многократно подтверждалось при проведении экспериментов. Из приведенных графиков также видно, что с увеличением угла раскрыва антенн, главный лепесток ДН в обеих плоскостях сужается, как и в случае расчетных ДН. Для антенн с углом раскрыва 30° ширина ДН по половинной мощности составляла порядка 54° в плоскости Е и порядка 56° в плоскости Н. Для антенн с углом раскрыва 60°, соответственно, порядка 50° в плоскости Е и порядка 51° в плоскости Н. Для антенн с углом раскрыва 90°, соответственно, порядка 25° в плоскости Е и порядка 36° в плоскости *H*. Для антенн с углом раскрыва 120° соответственно порядка 15° в плоскости *E* и порядка 19° в плоскости *H*. Из приведенных результатов следует, что экспериментально измеренные ДН хорошо согласуются с рассчитанными. Уровень боковых лепестков ДН во всех случаях был существенным, но не превышал значения половинной мощности. Высокий УБЛ вероятнее всего объясняется неидеальной формой исследовавшихся антенн и наличием отражения от стенок измерительной камеры.

Полученные результаты также свидетельствуют о возможности использования исследовавшихся антенн в составе более сложных антенных систем, например, в составе антенных решеток, описанных в [5; 9] для их дальнейшего совершенствования.

Список литературы

- Исследование плоских симметричных антенн с линейно расширяющимся раскрывом для антенных решеток / С.А. Парпула [и др.] // Физика волновых процессов и радиотехнические системы. 2013. Т. 16. № 3. 2013. С. 44-49.
- Заярный В.П. Радиофизические свойства твердотельных слоистых структур с зарядовой связью: методы и информационные возможности для их определения. М.: Радио и связь, 2001. 212 с.

T.18, №2

- Sharma A.K., Wilson R.M., Rosen A. An experimental investigation of millimeter-wave fin antennas // IEEE Antennas & Propagation Society APS. 1985. Vol. 6. P. 97-100.
- Janaswamy R., Schaubert D.H., Pozar D.M. Analysis of the transverse electromagnetic mode linearly tapered slot antenna // Radio Science. 1986. Vol. 21. № 5. P. 797-804.
- Фролов А.А., Гирич С.В., Заярный В.П. // Известия вузов «Радиофизика». 2012. Т. 55. № 10–11. С. 697–703.
- Неганов В.А., Раевский С.Б., Яровой Г.П. Линейная макроскопическая электродинамика / под ред. В.А. Неганова. Т. 1. М.: Радио и связь. 2000. 509 с.
- Неганов В.А., Нефедов Е.И., Яровой Г.П. Электродинамические методы проектирования устройств СВЧ и антенн. Учебное пособие для вузов / под ред. В.А. Неганова. М.: Радио и связь, 2002. 416 с.
- Неганов В.А., Нефедов Е.И., Яровой Г.П. Полосково-щелевые структуры сверх- и крайневысоких частот. М.: Наука. Физматлит, 1996. 304 с.
- Фролов А.А., Гирич С.В., Заярный В.П. Антенна кругового обзора. Патент на полезную модель № 103676. Зарегистрировано в Государственном реестре полезных моделей Российской Федерации 20 апреля 2011 г.

The effects of aperture angle on the electrodynamic characteristics of the planar short slot antenna microwave band

V.P. Zayarnyi, S.A. Parpula, V.S. Girich, I.N. Ponomarev

Characteristics of symmetric planar slot antennas of axial radiation, the size of which is comparable with the radiation wavelength ($\lambda = 30$ mm) having a linearly extending opening was studied. The same directional diagram investigated antennas have been theoretically calculated, experimentally measured and analyzed for Aperture angle of 30°, 60°, 90° and 120°. Experimentally measured directional diagram of the antennas (at frequencies of 10 GHz) are in good agreement with the developed mathematical models.

Keywords: planar slot antenna, radiating element, directional diagram, microwave band, half power.

Антипов, О.И. Детерминированный хаос и фракталы в дискретно-нелинейных системах / О.И. Антипов, В.А. Неганов, А.А. Потапов. – М.: Радиотехника, 2009. – 235 с., ил.

ISBN 978-5-88070-237-4

Антипов О.И., Неганов В.А., Потапов А.А.

Детерминированный хаос и фракталы в дискретно-нелинейных системах

УДК 530.1:621.372+621.396 ББК 32.96

В монографии рассмотрены явления детерминированного хаоса и фрактальности в дискретно-нелинейных системах на примере устройств импульсной силовой электроники, приведены некоторые основные определения современной нелинейной динамики и некоторые математические методы целочисленных и дробных мер.

Представленные явления стохастической работы могут наблюдаться в широком классе систем с переменной структурой, действие которых может быть описано системами дифференциальных уравнений с пе-

ременными коэффициентами, скачкообразно меняющими свои значения с течением времени в зависимости от состояния системы. Объектами исследования явились импульсные стабилизаторы напряжения различных типов и структур. Научной новизной является применение как фрактальных, так и мультифрактальных мер детерминированного хаоса к анализу стохастической работы импульсных стабилизаторов.

Для специалистов, интересующихся проблемами детерминированного хаоса, численным моделированием дискретно-нелинейных систем.