Физика волновых процессов и радиотехнические системы

УДК 537.86

Оценка скорости изменения параметров биполярного СВЧ-транзистора, работающего в высокотемпературном режиме

А.Б. Федотов

Нижегородский государственный технический университет им. Р.Е. Алексеева 603950, Российская Федерация, г. Нижний Новгород ул. Минина, 24

Вычислена скорость изменения топологических параметров (ширина и уровень легирования базы, коэффициент неоднородности) биполярного p-n-p-транзистора, предназначенного для работы при температурах $T \in [500 \div 700]$ К. Выполнена оценка скорости деградации рабочих параметров прибора. Показано, что достаточно стабильный высокотемпературный транзистор должен иметь уровень легирования базы не менее 5×10^{18} см⁻³ при достаточно большой глубине ее залегания.

Ключевые слова: СВЧ-транзистор, высокотемпературный режим, топологические параметры, скорость деградации, уровень легирования.

Введение

Проблема улучшения характеристик биполярных СВЧ-транзисторов принуждает проектировщиков к уменьшению ширины их базы [1-3]. С другой стороны, имеющиеся литературные данные [4; 5] свидетельствуют о том, что в интервале температур $450 \le T \le 1200$ К атомы легирующих примесей фосфора и бора мигрируют в кремнии по ускоренному междоузельному механизму; зависимость их коэффициентов диффузии от температуры имеет вид $D_{\rm P} = 0,335 \exp\left(-1,86eV / kT\right)$ см² / с и $D_{\rm P} = 1,58 \cdot 10^{-3} \exp\left(-2,50eV / kT\right)$ см² / с соответственню. Здесь постоянная Больцмана подставляется в виде $k = 8,62 \cdot 10^{-5} eV / {\rm K}$.

При этих обстоятельствах актуализируется проблема, связанная с диффузионным перераспределением атомов легирующих примесей в случае эксплуатации транзистора в экстремальных условиях (высокие температуры, воздействие ионизирующих излучений и т. д.), когда диффузионные длины $\sqrt{D_{\rm B}t}$ и в особенности $\sqrt{D_{\rm P}t}$ не являются пренебрежимо малыми по сравнению с шириной базы. Это перераспределение и связанное с ним изменение топологических параметров структуры необходимо учитывать, поскольку оно неизбежно влечет за собой деградацию основных рабочих характеристик прибора.

1. Постановка задачи

Цель данной работы состояла: а) в расчете кинетики диффузионных процессов в кремниевых p^{-n-p} -транзисторах, предназначенных для работы при температурах $T \in (500 \div 700)$ K; б) в прогнозировании предельного срока их службы, а также в выработке рекомендаций по проектированию указанного класса приборов.

Для исследования была выбрана р-n-рструктура, несмотря на то что в этом варианте неосновными носителями в базе, определяющими быстродействие прибора в целом, являются дырки, чья подвижность уступает подвижности электронов в кремнии. Дело в том, что для нормальной работы высокотемпературного прибора необходимо обеспечить более высокий уровень легирования базы по сравнению с обычными приборами, поскольку выпрямляющие характеристики обоих *p*-*n*-переходов в случае низколегированной базы ($N_{\text{базы}} \leq 10^{17} \text{ см}^{-3}$) резко ухудшаются. Уже при T = 500 К равновесная концентрация собственных носителей заряда в кремнии достигает значения $n_i \approx 10^{14}~{
m cm}^{-3}$ против $n_i \approx 10^{10} \text{ см}^{-3}$ при комнатной температуре. Поэтому для предотвращения неприемлемо высокой равновесной концентрации неосновных носителей в базе ~ n_i^2 / $N_{\mathrm{базы}}$ необходимо повысить уровень ее легирования по меньшей мере до значения $N_{\text{базы}} = 5 \cdot 10^{18} \text{ см}^{-3}$. Технологически

Рис. 1. начальные условия (тонкая оаза): $1 - N_{\rm B}(x,0);$ $2 - N_{\rm P}(x,0); 3 - N_{\rm K}$

это требование удобнее осуществить в случае, когда базу формирует донорная примесь (фосфор). Таким образом, можно сказать, что, выбирая вариант p-n-p вместо n-p-n-транзистора, мы жертвуем уменьшением подвижности неосновных носителей заряда в базе (и, кстати, коэффициента инжекции $\gamma = 1 - N_{\text{базы}} / N_{\text{эмиттера}}$) в обмен на работоспособность прибора при высоких температурах.

Такой прибор может быть изготовлен по двухэтапной технологии, в которой на первом этапе проводится формирование эмиттерного слоя путем ионной имплантации атомов бора в монокристаллическом кремнии *p*-типа, легированном акцепторной примесью до концентрации $N_{\rm K} = const$, на втором – формирование базы с помощью диффузии фосфора из неограниченного источника с одновременной дополнительной разгонкой бора. Повышение уровня легирования базы влечет за собой требование к ширине эмиттера; она должна быть сопоставима по порядку величины с шириной базы.

В связи с вышеизложенным одномерная краевая задача для дополнительной разгонки обеих примесей в процессе эксплуатации прибора при температурах $T \in (500 \div 700)$ К была сформулирована в виде системы уравнений диффузии

$$\frac{\partial N_{\rm P}}{\partial t} = D_{\rm P} \frac{\partial^2 N_{\rm P}}{\partial x^2}; \quad \frac{\partial N_{\rm B}}{\partial t} = D_{\rm B} \frac{\partial^2 N_{\rm B}}{\partial x^2}, \tag{1}$$

решаемых при начальных условиях (рис. 1)

$$N_{\rm P}(x,0) = 3 \cdot 10^{20} \operatorname{erfc}(x / x_{P0}) \text{ cm}^{-3},$$

$$N_{\rm B}(x,0) = 3,0 \cdot 10^{21} \exp\left(-x^2 / x_{B0}^2\right) \text{ cm}^{-3}$$
(2)

Рис. 2. Тонкая база, $N_{\rm K} = 10^{19} \text{ см}^{-3}$, T = 500 K: *a*) профили N, t = 0 (•), $t = 3 \cdot 10^8$ с (•); б) к расчету ширины базы (см. текст)

и граничных условиях, соответствующих отражающей границе *x* = 0:

$$\frac{\partial N_{\mathrm{P,B}}\left(0,t\right)}{\partial x} = 0, \quad N_{\mathrm{P,B}}\left(\infty,t\right) = 0.$$
(3)

В выражениях (1)-(3) $N_{\rm P}$ и $N_{\rm B}$ – концентрации атомов фосфора и бора; параметры $x_{\rm P0}$ и $x_{\rm B0}$ – исходные диффузионные длины фосфора и бора, соответственно. Эти параметры варьировались с целью сравнения двух вариантов структуры транзистора: с шириной базы $W_1 = 180$ нм (далее – тонкая база) и $W_2 = 360$ нм (широкая база) при различных значениях ширины эмиттера. Также (как дополнительный фактор регулирования исходной ширины базы и эмиттера) варьировался уровень легирования коллектора в пределах $5 \cdot 10^{17} \le N_{\rm K} \le 10^{20}$ см⁻³. На рис. 1 в качестве примера представлены начальные условия для транзистора с тонкой базой при $N_{\rm K} = 10^{19}$ см⁻³.

2. Расчет топологических параметров

На основе полученных решений системы (1)– (3) строится семейство координатных профилей разности концентраций акцепторных $N_{\rm B}(x,t)$, $N_{\rm K}$ и донорной $N_{\rm P}(x,t)$ примесей для разных времен эксплуатации: $N = N_{\rm B} + N_{\rm K} - N_{\rm P}$. Условие N = 0 определяет так называемые металлургические границы эмиттерного $x_{\rm B}$ и коллекторного $x_{\rm K}$ переходов, а минимум $N_{\rm m}(t)$ – уровень легирования базы. На рис. 2, *а* показан расчетный профиль N(x,t) для времени работы $t = 3 \cdot 10^8$ с (~ 10 лет) при температуре T = 500 K в сравнении с исходным профилем N(x,0). Соответственно, металлургическая ширина базы определяется как $L(t) = x_{\rm K} - x_{\rm D}$.

Физическая ширина базы вычисляется по формуле $W(t) = L(t) - \Delta_1 - \Delta_2$, где $\Delta_{1,2}$ – длины областей пространственного заряда (ОПЗ) в базе вблизи эмиттерного и коллекторного переходов (рис. 2, б). На рисунке эти области изображены в виде прямоугольников с косой штриховкой. Используя известные выражения для $\Delta_{1,2}$ из [6], получаем

$$W(t) = L(t) - \sqrt{\frac{2\varepsilon\varepsilon_0\Delta\varphi_{\Theta}}{eN_{\rm P}(x_{\Theta},t)}} - \sqrt{\frac{2\varepsilon\varepsilon_0\Delta\varphi_{\rm K}}{eN_{\rm P}(x_{\rm K},t)}}, \qquad (4)$$

где $\varepsilon = 11,7$ – диэлектрическая проницаемость кремния; $\Delta \phi_{\Im,K}$ – высоты потенциальных барьеров эмиттерного и коллекторного переходов. Для кремния принимается $\Delta \phi_{\Im} = \Delta \phi_K \cong 1$ В.

Коэффициент неоднородности донорной примеси в базе определяется как отношение $\eta = W / 2l_0$, где l_0 – расстояние, на котором концентрация доноров уменьшается в e = 2,72 раза. Этот параметр как функция времени определялся путем численного решения уравнения

 $N_{\mathrm{P}}\left(x_{\mathfrak{B}}+l_{0},t\right)=e^{-1}N_{\mathrm{P}}\left(x_{\mathfrak{B}},t\right).$

Результаты расчета относительного увеличения уровня легирования базы $\Delta N_{\rm m} / N_{\rm m}$, ее ширины $\Delta W / W$ и коэффициента неоднородности $\Delta \eta / \eta$ для времени работы прибора $t = 3 \cdot 10^8$ с и рабочей температуры T = 500 К представлены в таблице ниже. Из данных этой таблицы следует, что стабильность топологических параметров существенно зависит от начальных условий (2). Скорость изменения уровня легирования, ширины базы и коэффициента неоднородности резко уменьшается вместе с увеличением исходной ширины базы, а также с увеличением параметров $N_{\rm K}$ и $x_{\rm P0}$.

Этой информации, однако, еще недостаточно для выбора оптимальной конфигурации высокотемпературного СВЧ-транзистора. Необходимо наряду с данными таблицы учитывать скорость изменения его рабочих характеристик.

3. Деградация характеристик транзистора

Коэффициент переноса и коэффициент инжекции вычислялись по формулам $\chi = 1 - W^2 \times (1 + \eta) / L_p^2$ и $\gamma = 1 - N_P (x_{\Im}, t) / N_B (0, t)$. Здесь

Рис. 3. Коэффициент усиления, T = 500 К: a) $x_{P0} = 215$ нм (×), 294 нм (•), 865 нм (•); б) $x_{P0} = 280$ нм (×), 400 нм (•), 1080 нм (•)

 $L_p = \sqrt{kT\mu_p \tau_r}$ — диффузионная длина дырок; μ_p – их подвижность; τ_r – время рекомбинации [6]. Низкочастотный коэффициент усиления по току в схеме с общим эмиттером вычисляется как $\beta = \alpha (1 - \alpha)^{-1}$, где $\alpha = \gamma \chi$. Очевидно, величина в определяется тем из сомножителей, который больше отличается от единицы. Принимая для T = 500 K (и с учетом повышенного уровня легирования базы) значения $\mu_p = 50 \text{ см}^2 / \text{B} \cdot \text{c}$ и $\tau_r = 4 \cdot 10^{-5}$ с [7], можно убедиться, что для высокотемпературного транзистора выполняется соотношение $1 - \gamma \gg 1 - \chi$ при обоих вариантах ширины базы. Поэтому в качестве разумного приближения для коэффициента усиления было принято: $\beta = \gamma (1 - \gamma)^{-1}$. Таким образом, β практически не зависит от ширины базы. Зато весьма существенна зависимость этого параметра от текущего значения $\gamma = 1 - N_P(x_B, t) / N_B(0, t)$. Именно этот фактор обуславливает высокую скорость деградации β в случае сравнительно малых диффузионных длин $x_{\rm P0}$ и, соответственно, малых глубин коллекторного перехода (рис. 3). Рисунок показывает, что стабилизация достижима путем увеличения параметра $x_{\rm P0}$ за счет существенного уменьшения коэффициента усиления.

Рис. 4. Деградация СВЧ-характеристик, *T* = 500 К. Точечные линии – тонкая база; сплошные – широкая база (см. пояснения к рис. 3): *a*) время пролета; *б*) предельная частота; *в*) сдвиг фаз

Время пролета дырок $\tau = 0,5\tau_r \left(W/L_p\right)^2 (1--\eta)^{-1}$, предельная рабочая частота транзистора $v_{\rm np} = 2,53 \left(L_p/W\right)^2 \left[2\pi\tau_r (1+\eta)\right]^{-1}$ и фазовый сдвиг сигнала на коллекторе $\Delta \phi = arctg \left(v\tau_r W^2/2L_p^2\right)$, как функции времени эксплуатации представлены на рис. 4. Сдвиг фаз вычислялся для рабочих частот 1 ГГц (тонкая база) и 500 МГц (широкая база). В случае сравнительно неглубоких коллекторных переходов (малых значений $N_{\rm K}$ и $x_{\rm P0}$) для всех параметров ожида-

ется $10 \div 20$ -процентная деградация за $5 \div 10$ лет работы при T = 500 К. Увеличение значений $N_{\rm K}$ и $x_{\rm P0}$ эффективно стабилизирует все характеристики, но сопряжено с увеличением времени пролета приблизительно в 2 раза (рис. 4, *a*).

Максимальная рабочая частота высокотемпературного транзистора при ширине базы 180 нм не превысит $v_{\rm np} = 2$ ГГц. Уменьшение этого параметра до значений $W = 50 \div 100$ нм может решить проблему и позволит увеличить $v_{\rm np}$ до 10 ГГц, если удастся преодолеть трудность обеспечения достаточно высокого уровня легирования базы.

4. Прогноз срока службы прибора при рабочих температурах *T* > 500 K

Ожидаемый срок службы длительностью в несколько лет представляется вполне достаточным на фоне быстрого морального устаревания приборов и техники СВЧ. Ниже будет показано, что эти сроки труднодостижимы уже при T = 600 К. Для оценки этих сроков в качестве критерия был избран параметр t(10 %), определенный как время изменения ширины базы на 10 %.

Нетрудно убедиться, что краевая задача $(1)^{-}(3)$ инвариантна по отношению к сомножителям произведения $D_{\rm P}(T)t$, если пренебречь сравнительно медленным смещением границы эмиттер-база. Иными словами, изменение ширины базы при любой температуре эксплуатации однозначно определяется величиной произведения $D_{\rm P}(T)t$. Из этого, в свою очередь, следует, что величина параметра t(10~%) для любой рабочей температуры в интервале $T \in 500 \div 700$ К может быть рассчитана на основе соотношения $t(10~\%) = t_{500}D_{\rm P}(500) / D_{\rm P}(T)$, где t_{500} – значение этого параметра при T = 500 К.

Результаты этого расчета для тонкой и широкой базы приведены на рис. 5, *a*, *б*. Видно, что при увеличении температуры эксплуатации скорость деградации стремительно растет; в результате изменение параметров транзистора с базой 180 нм на 10 % может произойти уже через $1 \div 2$ часа работы прибора при T = 700 К.

Заключение

Достаточно стабильный кремниевый биполярный p-n-p-транзистор, предназначенный для работы при температурах до T = 500 К включительно, может быть реализован. Условия этой реализации: 1) повышение уровня ле-

гирования базы по меньшей мере до значения $N_{\rm P} = 5 \cdot 10^{18} \ {\rm cm}^{-3};$ 2) обеспечение максимальной глубины залегания коллекторного перехода при уровне легирования коллектора $N_{\rm K} = 10^{20} \ {\rm cm}^{-3}.$

При ширине базы 180 нм рабочая частота такого транзистора может достигать значения 2 ГГц, а коэффициент усиления $\beta = 18$.

Таблица

$10^{17} { m cm}^{-3}$	Тонкая база, W = 180 нм	$\begin{array}{l} \Delta N_{\rm m} \ / \ N_{\rm m} = 72 \ \% \\ \Delta W \ / \ W = 25 \ \% \\ \Delta \eta \ / \ \eta = 9,1 \ \% \\ (x_{\rm P0} = 215 \ {\rm mm}) \end{array}$	$0^{19} { m ~cm^{-3}}$	$\begin{array}{l} \Delta N_{\rm m} \ / \ N_{\rm m} = 18,6 \ \% \\ \Delta W \ / \ W = 11 \ \% \\ \Delta \eta \ / \ \eta = 4,4 \ \% \\ (x_{\rm P0} = 294 \ {\rm Hm}) \end{array}$	$ m)^{20}~cm^{-3}$	$\begin{array}{l} \Delta N_{\rm m} \ / \ N_{\rm m} \ = 2,7 \ \% \\ \Delta W \ / \ W \ = 2 \ \% \\ \Delta \eta \ / \ \eta \ = 2,7 \ \% \\ (x_{\rm P0} \ = 865 \ {\rm hm}) \end{array}$
$N_{ m K} = 5 \cdot 1$	Широкая база, W = 360 нм	$\begin{array}{l} \Delta N_{\rm m} \ / \ N_{\rm m} = 16, 6 \ \% \\ \Delta W \ / \ W = 7, 7 \ \% \\ \Delta \eta \ / \ \eta = 1, 3 \ \% \\ (x_{\rm P0} = 280 \ {\rm Hm}) \end{array}$	$N_{ m K} = 10$	$ \begin{array}{c} \Delta N_{\rm m} \ / \ N_{\rm m} = 3,1 \ \% \\ \Delta W \ / \ W = 3,3 \ \% \\ \Delta \eta \ / \ \eta = 1,1 \ \% \\ (x_{\rm P0} = 400 \ {\rm Hm}) \end{array} $	$N_{ m K}=10$	$\begin{array}{c} \Delta N_{\rm m} \ / \ N_{\rm m} = 0,6 \ \% \\ \Delta W \ / \ W = 0,6 \ \% \\ \Delta \eta \ / \ \eta = 0,2 \ \% \\ (x_{\rm P0} = 1080 \ {\rm HM}) \end{array}$

Список литературы

- Пожела Ю.К. Физика быстродействующих транзисторов. Вильнюс: Мокслас, 1989. 264 с.
- Hansen O. Diffusion in a short base // Solid-State Electronics. 1994. V. 37. № 9. P. 1663-1669.
- Pulfrey D.L., St. Denis A.R., Vaidyanatham M. Compact modeling of high-frequency smoll-dimension bipolar transistor // IEEE COMMAD98. 1998. P. 1-5.
- Александров О.В. Модель высоко- и низкотемпературной диффузии фосфора в кремнии по дуальному парному механизму // ФТП. 2001. Т. 35. Вып. 11. С. 1289–1298.
- Velichko O.I., Aksenov V.V., Kovaleva A.P. Modeling of the interstitial diffusion in crystalline silicon // Journal of Engineering Physics and Thermophysics. 2012. V. 85. № 4. P. 926-932.
- Гуртов В.А. Твердотельная электроника. М.: Мир, 2005, 492 с.
- Шалимова К.В. Физика полупроводников. М.: Энергоатомиздат, 1985. 392 с.

Evaluation parameters rate of change of the microwave bipolar transistor operated in the high mode

A.B. Fedotov

Calculated rate of change of topological parameters (width and doping level of the base as well as the coefficient of heterogeneity) bipolar p-n-p-transistor, designed for operation at temperatures $T \in [500 \div 700]$ K. The estimation of the degradation rate of operating parameters of the device. It is shown, that stable enough high-level transistor must have at least base doping $k = 8,62 \cdot 10^{-5}$ eV / K at a sufficient depth of its occurrence.

Keywords: microwave bipolar transistor, high mode, topological parameters, degradation rate, base doping.